

KT8P01 2.4G SOC

V1.0

Revision History

Revision	Date	Description		
V0.1	Jul 1, 2014	Update from brief version		
V0.2	Jul 7, 2014	Update pad location		
V0.3	Jul 9, 2014	Update some details		
V0.4	Oct 14, 2014	Update maximum power;		
		Update 500Kbps and 2Mbps sensitivity		
V0.5	Dec 9, 2014	Add ESOP16 and SSOP24 package		
V0.6	Jan 12, 2015	Update some MCU configuration		
V0.7	Apr 21,2015	Update maximum power;Auto Retransmit		
		registerdescription		
V0.8	Apr 28,2015	Add Electrical characteristics		
V0.9	Jun19,2015	Modifydescription of PxCON about pull upresistor		
V1.0	Nov 6,2015	Add POF and Brown out reset description		

CONTENTS

1 Introduction 11 1.1 Pad assignment 11 1.2 Pad function 12 1.3 Package 14 2 Product overview 15 2.1 Features 15 2.2 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3.1 Features 19 3.2 Block 20 3.3 Functional doct 20 3.4 Pattures 19 3.2 Block 20 3.4 PowerDown Mode 22 3.4.1 PowerDown Mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.3 RX mode 23 3.4.3 Operational modes configuration 23 3.4.4 TX mode 23 3.4.3 PowerDown Mode 23 3.4.4 TX mode 23 3.4.3 PowerDown Mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information </th <th>Revision History</th> <th>2</th>	Revision History	2
1.2 Pad function 12 1.3 Package 14 2 Product overview 15 2.1 Features 15 2.1 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3.6 Fe transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 Deperational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.3 RX mode 22 3.4.4 TX mode 22 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.9 Received Power Detector measurements 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25	1 Introduction	11
1.3 Package 14 2 Product overview 15 2.1 Features 15 2.2 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Flectrical specifications 17 3.1 Features 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 DowerDown Mode 22 3.4.1 DowerDown Mode 22 3.4.2 Standby-I mode 22 3.4.3 Standby-I mode 22 3.4.4 TX mode 22 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Air data rate 26 3.7 Protocol engine packet format 26 3.7 Protocol engine packet format 26 3.7 Protocol engine packet	1.1 Pad assignment	11
2 Product overview 15 2.1 Features 15 2.2 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3 RF transceiver 19 3.1 Features 19 3.2 Block. 20 3.4 Operational description 20 3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.1 RX/TX control 25 3.5 Protocol Engine 25 3.6 Protocol Engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Addre	1.2 Pad function	12
2.1 Features 15 2.2 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3 RF transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 I PowerDown Mode 22 3.4.1 Standby-I mode 22 3.4.2 Standby-II mode 22 3.4.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 Protocol engine exerciter 25 3.6 Protocol engine packet format 26 3.7 Protocol engine packet format 26 3.7 Protocol engine packet format 26 3.7 Protocol engine packet format	1.3 Package	14
2.2 Blocks 16 2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3 RF transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 I PowerDown Mode 22 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 Protocol Engine 25 3.6 Protocol Engine overview 25 3.6 Protocol Engine overview 25 3.7 Protocol engine packet format 26	2 Product overview	15
2.3 Absolute maximum ratings 16 2.4 Operating conditions 17 2.5 Electrical specifications 17 3 RF transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby-I mode 22 3.4.2 Standby-I mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 I Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Fie	2.1 Features	15
2.4 Operating conditions 17 2.5 Electrical specifications 17 3.8 F transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 Operational Modes 20 3.4 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby-I mode 22 3.4.2 Standby-II mode 22 3.4.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channiel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 I Features 25 3.6 I Frotocol Engine 25 3.7 Protocol engine overview 25 3.6 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Ardxete	2.2 Blocks	16
2.5 Electrical specifications 17 3 RF transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 DowerDown Mode 22 3.4.1 PowerDown Mode 22 3.4.2 Standby-II mode 22 3.4.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 22 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.9 Received Power Detector measurements 25 3.5 Protocol Engine 25 3.5 Protocol Engine 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7 Address	2.3 Absolute maximum ratings	16
3 RF transceiver 19 3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 DeverDown Mode 22 3.4.1 PowerDown Mode 22 3.4.2 Standby-I mode 22 3.4.2 Standby-II mode 22 3.4.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 Protocol Engine 25 3.5.1 Features 25 3.6 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) </td <td>2.4 Operating conditions</td> <td>17</td>	2.4 Operating conditions	17
3.1 Features 19 3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.2.3 Standby-II mode 22 3.4.4 TX mode 22 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28	2.5 Electrical specifications	17
3.2 Block 20 3.3 Functional description 20 3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby-I mode 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28	3 RF transceiver	19
3.3 Functional description 20 3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2 Standby Modes 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.7 Automatic packet assembly 28	3.1 Features	19
3.4 Operational Modes 20 3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.5 J Frotocol Engine 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.7 Automatic packet assembly 28	3.2 Block	20
3.4.1 PowerDown Mode 22 3.4.2 Standby Modes 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 22 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.6 Protocol engine exercise 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF). 27 3.7.5 Payload 28 3.7.7 Automatic packet assembly. 28	3.3 Functional description	20
3.4.2 Standby Modes 22 3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.4 Operational Modes	20
3.4.2.1 Standby-I mode 22 3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.7 Automatic packet assembly 28		
3.4.2.2 Standby-II mode 22 3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine overview 25 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.7 Automatic packet assembly 28	3.4.2 Standby Modes	22
3.4.3 RX mode 22 3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.4.2.1 Standby-I mode	22
3.4.4 TX mode 23 3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5.1 Features 25 3.6 Protocol Engine 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28	3.4.2.2 Standby-II mode	22
3.4.5 Operational modes configuration 23 3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.5 Payload 27 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.4.3 RX mode	22
3.4.6 Timing Information 23 3.4.7 Air data rate 24 3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.6 Protocol engine overview 25 3.6 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.4.4 TX mode	23
3.4.7 Air data rate.243.4.8 RF channel frequency.243.4.9 Received Power Detector measurements243.4.10 PA control253.4.11 RX/TX control253.5 Protocol Engine253.5 1 Features.253.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF).273.7.5 Payload283.7.7 Automatic packet assembly.28	3.4.5 Operational modes configuration	23
3.4.8 RF channel frequency 24 3.4.9 Received Power Detector measurements 24 3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.5.1 Features 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28		
3.4.9 Received Power Detector measurements243.4.10 PA control253.4.11 RX/TX control253.5 Protocol Engine253.5.1 Features253.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.4.7 Air data rate	24
3.4.10 PA control 25 3.4.11 RX/TX control 25 3.5 Protocol Engine 25 3.5.1 Features 25 3.6 Protocol engine overview 25 3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.4.8 RF channel frequency	24
3.4.11 RX/TX control253.5 Protocol Engine253.5.1 Features253.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.4.9 Received Power Detector measurements	24
3.5 Protocol Engine253.5.1 Features253.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.4.10 PA control	25
3.5.1 Features253.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.4.11 RX/TX control	25
3.6 Protocol engine overview253.7 Protocol engine packet format263.7.1 Preamble263.7.2 Address263.7.3 Guard273.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.5 Protocol Engine	25
3.7 Protocol engine packet format 26 3.7.1 Preamble 26 3.7.2 Address 26 3.7.3 Guard 27 3.7.4 Packet Control Field (PCF) 27 3.7.5 Payload 28 3.7.6 CRC (Cyclic Redundancy Check) 28 3.7.7 Automatic packet assembly 28	3.5.1 Features	25
3.7.1 Preamble .26 3.7.2 Address .26 3.7.3 Guard .27 3.7.4 Packet Control Field (PCF) .27 3.7.5 Payload .28 3.7.6 CRC (Cyclic Redundancy Check) .28 3.7.7 Automatic packet assembly .28	3.6 Protocol engine overview	25
3.7.2 Address .26 3.7.3 Guard .27 3.7.4 Packet Control Field (PCF) .27 3.7.5 Payload .28 3.7.6 CRC (Cyclic Redundancy Check) .28 3.7.7 Automatic packet assembly .28	3.7 Protocol engine packet format	26
3.7.3 Guard .27 3.7.4 Packet Control Field (PCF) .27 3.7.5 Payload .28 3.7.6 CRC (Cyclic Redundancy Check) .28 3.7.7 Automatic packet assembly .28	3.7.1 Preamble	26
3.7.4 Packet Control Field (PCF)273.7.5 Payload283.7.6 CRC (Cyclic Redundancy Check)283.7.7 Automatic packet assembly28	3.7.2 Address	26
3.7.5 Payload	3.7.3 Guard	27
3.7.6 CRC (Cyclic Redundancy Check)	3.7.4 Packet Control Field (PCF)	27
3.7.7 Automatic packet assembly	3.7.5 Payload	28
	3.7.6 CRC (Cyclic Redundancy Check)	
2.7.8 Automatic modulat diagagembly	3.7.7 Automatic packet assembly	
5.7.8 Automatic packet disassembly	3.7.8 Automatic packet disassembly	

3.8.1 Auto Acknowledgement.313.8.2 Auto Retransmission (ART)313.9 Protocol engine flowcharts323.9.1 PTX operation333.9.2 PRX operation343.10 MultiSlave363.11 Protocol engine timing383.12 Protocol engine transaction diagram403.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with ACK payload packet413.12.4 Single transaction with ACK payload packet and lost packet423.12.5 Single transactions with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.13 Data and control interface443.13 SPR registers443.13 SPI Operation45
3.9 Protocol engine flowcharts323.9.1 PTX operation333.9.2 PRX operation343.10 MultiSlave363.11 Protocol engine timing383.12 Protocol engine transaction diagram403.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost packet413.12.4 Single transaction with ACK payload packet423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.13 Data and control interface443.13 I SFR registers44
3.9.1 PTX operation333.9.2 PRX operation343.10 MultiSlave363.11 Protocol engine timing383.12 Protocol engine transaction diagram403.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost packet403.12.4 Single transaction with a lost ACK packet413.12.5 Single transaction with ACK payload packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.12.7 Two transactions where max retransmissions is reached433.13 Data and control interface44
3.9.2 PRX operation343.10 MultiSlave363.11 Protocol engine timing383.12 Protocol engine transaction diagram403.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost ACK packet413.12.4 Single transaction with ACK payload packet423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.13 Data and control interface443.13 I SFR registers44
3.10 MultiSlave363.11 Protocol engine timing383.12 Protocol engine transaction diagram403.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost ACK packet413.12.4 Single transaction with ACK payload packet423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.13 Data and control interface443.13 I SFR registers44
3.11 Protocol engine timing
3.12 Protocol engine transaction diagram
3.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost ACK packet413.12.4 Single transaction with ACK payload packet423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.12.7 Two transactions where max retransmissions is reached433.13 Data and control interface443.13.1 SFR registers44
3.12.1 Single transaction with ACK packet and interrupts403.12.2 Single transaction with a lost packet403.12.3 Single transaction with a lost ACK packet413.12.4 Single transaction with ACK payload packet423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost433.12.7 Two transactions where max retransmissions is reached433.13 Data and control interface443.13.1 SFR registers44
3.12.2 Single transaction with a lost packet.403.12.3 Single transaction with a lost ACK packet.413.12.4 Single transaction with ACK payload packet.423.12.5 Single transaction with ACK payload packet and lost packet.423.12.6 Two transactions with ACK payload packet and the first ACK packet lost.433.12.7 Two transactions where max retransmissions is reached.433.13 Data and control interface.443.13.1 SFR registers.44
3.12.3 Single transaction with a lost ACK packet413.12.4 Single transaction with ACK payload packet.423.12.5 Single transaction with ACK payload packet and lost packet423.12.6 Two transactions with ACK payload packet and the first ACK packet lost.433.12.7 Two transactions where max retransmissions is reached.433.13 Data and control interface.443.13.1 SFR registers44
3.12.4 Single transaction with ACK payload packet
3.12.5 Single transaction with ACK payload packet and lost packet
3.12.6 Two transactions with ACK payload packet and the first ACK packet lost
3.12.7 Two transactions where max retransmissions is reached
3.13 Data and control interface
3.13.1 SFR registers
45 A SPI Operation
3.13.2.1 SPI commands
3.13.3 Data FIFO
3.13.4 Interrupt
3.14 Register map
3.14.1 Register map table
3.14.2 BANK0
3.14.2.1 CONFIG (RW)Address: 00h
3.14.2.2 EN_AA (RW)Address: 01h
3.14.2.3 EN_RXADDR (RW)Address: 02h
3.14.2.4 SETUP_AW (RW)Address: 03h
3.14.2.5 SETUP_RETR (RW)Address: 04h
3.14.2.6 RF_CH (RW)Address: 05h
3.14.2.7 RF_SETUP (RW)Address: 06h
3.14.2.8 STATUS (RW)Address: 07h
3.14.2.9 OBSERVE_TX (RW)Address: 08h
3.14.2.10 RPD (R)Address: 09h
3.14.2.11 RX_ADDR_P0 (RW)Address: 0Ah
3.14.2.12 RX_ADDR_P1 (RW)Address: 0Bh
3.14.2.13 RX_ADDR_P2 (RW)Address: 0Ch
3.14.2.14 RX_ADDR_P3 (RW)Address: 0Dh
3.14.2.15 RX_ADDR_P4 (RW)Address: 0Eh55
3.14.2.16 RX_ADDR_P5 (RW)Address: 0Fh56
3.14.2.17 TX_ADDR(RW)Address: 10h
3.14.2.18 RX_PW_P0 (RW)Address: 11h
3.14.2.19 RX_PW_P1 (RW)Address: 12h
3.14.2.20 RX_PW_P2 (RW)Address: 13h

3.14.2.21 RX_PW_P3 (RW)Address: 14h	58
3.14.2.22 RX_PW_P4 (RW)Address: 15h	58
3.14.2.23 RX_PW_P5 (RW)Address: 16h	59
3.14.2.24 FIFO_STATUS (RW)Address: 17h	59
3.14.2.25 DYNPD (RW)Address: 1Ch	60
3.14.2.26 FEATURE (RW)Address: 1Dh	61
3.14.2.27 SETUP_VALUE (RW)Address: 1Eh	61
3.14.2.28 PRE_GURD (RW)Address: 1Fh	62
3.14.3 Bank1	63
3.14.3.1 PLL_CTL0 (RW)Address: 01h	63
3.14.3.2 PLL_CTL1 (RW)Address: 02h	66
3.14.3.3 CAL_CTL (RW)Address: 03h	67
3.14.3.4 A_CNT_REG (RW)Address: 04h	69
3.14.3.5 B_CNT_REG (RW)Address: 05h	70
3.14.3.6 STATUS (RW)Address: 07h	70
3.14.3.7 STATE (RW)Address: 08h	71
3.14.3.8 CHAN (RW)Address: 09h	71
3.14.3.9 IF_FREQ (RW)Address: Oah	
3.14.3.10 AFC_COR (RW)Address: 0bh	73
3.14.3.11 FDEV (RW)Address: 0ch	
3.14.3.12 DAC_RANGE (RW)Address: 0dh	74
3.14.3.13 DAC_IN (RW)Address: 0eh	74
3.14.3.14 CTUNING (RW)Address: Ofh	74
3.14.3.15 FTUNING (RW)Address: 10h	75
3.14.3.16 RX_CTRL (RW)Address: 11h	76
3.14.3.17 FAGC_CTRL (RW)Address: 12h	77
3.14.3.18 FAGC_CTRL_1 (RW)Address: 13h	
3.14.3.19 DAC_CAL_LOW (RW)Address: 17h	
3.14.3.20 DAC_CAL_HI (RW)Address: 18h	79
3.14.3.21 DOC_DACI (RW)Address: 1ah	79
3.14.3.22 DOC_DACQ (RW)Address: 1bh	80
3.14.3.23 AGC_CTRL (RW)Address: 1ch	80
3.14.3.24 AGC_GAIN (RW)Address: 1dh	81
3.14.3.25 RF_IVGEN (RW)Address: 1eh	82
3.14.3.26 TEST_PKDET (RW)Address: 1fh	83
4 MCU	
4.1 Block diagram	
4.2 Features	
4.3 Instructions in Functional Order	
4.3.1 Arithmetic Operations	
4.3.2 Logic Operations	
4.3.3 Data Transfer Operations	
4.3.4 Program Branches	
4.3.5 Boolean Manipulation	
5 Memory and I/O organization	

5.1 CPU Special Function Registers	92
5.1.1 Accumulator – ACC	92
5.1.2 B register – B	93
5.1.3 Program Status Word Register – PSW	93
5.1.4 Stack Pointer – SP	93
5.1.5 Data Pointer – DPH, DPL	93
5.1.6 Data Pointer 1 – DPH1, DPL1	94
5.1.7 Data Pointer Select Register – DPS	94
5.1.8 PCON register	94
5.1.9 Clock Control Register – CKCON	95
5.1.10 Software Reset Register SRST	95
5.1.11 Special Function Register Map	95
6 OTP memory	97
6.1 Features	97
6.2 Block diagram	97
6.3 Functional description.	97
6.3.1 Using the NV data memory	98
6.3.2 OTP memory configuration	
6.3.2.1 OTP read and write protection	98
6.3.2.2 Memory status register FSR	
6.3.2.3 Memory Control Register – MEMCON	
6.3.3 Brown-out	99
6.3.4 OTP programming from the MCU	99
6.3.5 OTP programming through SPI	100
6.4 Production Test	
6.4.1 Blank Check (Defective Bit Screen Test)	102
6.4.2 TESTDEC (Word-line and Bit-line Integrity Test)	103
6.4.3 WRTEST (Pre-program Test)	103
7 Power management	105
7.1 Power domain	105
7.2 Mode of operation	
7.3 Functional description	
7.3.1 Power down control – PWRDWN	
7.3.2 Power Fail comparator and Brown-out reset- POFCON	109
7.3.3 Reset result – RSTREAS	110
7.3.4 Wakeup configuration register – WUCON	110
7.3.5 Mode Control – OPMCON	111
7.3.6 Charge pump and 2v LDO for sensor register-CPLDOCON	111
7.4 Power consumption	112
8 Clock and Reset management	113
8.1 Clock Block diagram	
8.2 Clock control	
8.3 32K OSC clock calibration	115
8.4 Reset Control	
9 USB Configuration	

9.1 Feature	117
9.2 Block diagram	118
9.3 MCU interface	118
9.4 Wakeup/suspend control	119
9.5 SFR register	119
9.5.1 USB Control register-USBCON	119
9.5.2 USBPCON registers —USBPCON	
9.5.3 USBPCON registers —USBPCON1	
9.6 USB Registers	121
9.6.1 Function address register- FADDR	121
9.6.2 Power management register-POWER	121
9.6.3 Interrupt register for Endpoint 0 plus IN Endpoints 1 to 7-INTRIN1	
9.6.4 Interrupt register for IN Endpoints 8 to 15-INTRIN2	
9.6.5 Interrupt register for OUT Endpoints 1 to 7-INTROUT1	
9.6.6 Interrupt register for OUT Endpoints 8 to 15-INTROUT2	124
9.6.7 Interrupt register for common USB interrupts-INTRUSB	124
9.6.8 Interrupt enable register for INTRIN1-INTRIN1E	
9.6.9 Interrupt enable register for INTRIN1-INTRIN2E	126
9.6.10 Interrupt enable register for INTROUT1-INTROUT1E	
9.6.11 Interrupt enable register for INTROUT2-INTROUT2E	
9.6.12 Interrupt enable register for INTRUSB-INTRUSBE	
9.6.13 Frame number bits 0 to 7-FRAME1	
9.6.14 Frame number bits 8 to 10-FRAME2	
9.6.15 Index register for selecting the endpoint status and control registers-INDEX	
9.6.16 Control Status register for Endpoint 0-CSR0	
9.6.17 Maximum packet size for IN endpoint-INMAXP	
9.6.18 Control Status register 1 for IN endpoint-INCSR1	
9.6.19 Control Status register 2 for IN endpoint-INCSR2	
9.6.20 Maximum packet size for OUT endpoint-OUTMAXP	
9.6.21 Control Status register 1 for OUT endpoint-OUTCSR1	
9.6.22 Control Status register 2 for OUT endpoint-OUTCSR2	
9.6.23 Number of received bytes in Endpoint 0 FIFO-COUNT0	
9.6.24 Number of bytes in OUT endpoint FIFO-OUTCOUNT1	
9.6.25 Number of bytes in OUT endpoint FIFO-OUTCOUNT2	
9.6.26 FIFOs for Endpoints 0 to 3-FIFOx	
10 SPI	
	100
10.1 Features	
10.2 Block diagram	
10.3 Functional description	
10.3.1 SPI master	
10.3.2 Re-Synchronize the Interface (2-wire)	
10.3.3 3-wire SPI data transfer timing	
10.3.4 SPI slave	
10.3.5 SPI modes	
11 Timer 0 and Timer 1	146

11.1 Timer 0	146
11.1.1 Mode 0	146
11.1.2 Mode 1	
11.1.3 Mode 2	147
11.1.4 Mode 3	147
11.2 Timer 1	147
11.2.1 Mode0	147
11.2.2 Mode1	
11.2.3 Mode2	
11.2.4 Mode3	
11.3 SFR registers	
11.3.1 Timer/Counter control register – TCON	149
11.3.2 Timer mode register – TMOD	
11.3.3 Timer 0 – TH0, TL0	
11.3.4 Timer 1 – TH1, TL1	
12 Timer 2	
12.1 Timer 2 operate	
12.1.1 Timer Mode	
12.1.2 Event Counter Mode	
12.1.3 Gated Timer Mode	
12.2 Reload Function	
12.3 Capture Function	
12.4 Compare Function	
12.4.1 Compare mode 0	
12.4.2 Compare mode 1	
12.5 Timer 2 Interrupt	
12.6 SFR registers	
12.6.1 Timer 2 control register – T2CON	
12.6.2 Timer 2 – TH2, TL2	
12.6.3 Compare/Capture enable register – CCEN	
12.6.4 Capture moderegister – CCEN1	
12.6.5 Timer 2 Interrupt Enable Register –T2IER	
12.6.6 Timer 2 Interrupt Status Register –T2SR	
12.6.7 Capture registers – CC1, CC2, CC3	
12.6.8 Compare/Reload/Capture register – CRCH, CRCL	
13 Watchdog and RTC Wakeup Timer	
13.1 Features	
13.2 Block diagram	
13.3 Functional description	
13.3.1 Watchdog	
13.3.2 RTC	
13.3.3 Programming interface to watchdog and RTC functions	
13.4 SFR registers	
13.4.1 Tick calibration control register – TICKDV	
. 13.4.2 Data register – REGXH REGXL	

13.4.3 Control register – REGXC	167
13.4.3.1 Indirect addresses and functions table	167
13.4.3.2 Wakeup enable/disable and edge selection table	169
14 GPIO Purpose IO Port and Pin Assignment	171
14.1 Block diagram	171
14.2 Features	171
14.3 IO pin maps	172
14.4 IO pin Description	174
14.5 Functional description	175
14.5.1 Digital filter	175
14.5.2 General purpose IO pin functionality	175
14.5.3 PortCrossbar functionality	175
14.5.4 Dynamic allocation of pins	176
14.5.5 Dynamic pin allocation for digital blocks	176
14.5.6 Default pin allocation	176
14.5.7 Debug functionality	176
14.6 SFR registers	176
14.6.1 Control digital filter registers-CFG_DFEN_P0, CFG_DFEN_P1, CFG_DFEN_P2	176
14.6.2 Debug select data registers – REG_DBG_SEL_0, REG_DBG_SEL_1	179
14.6.3 Directioncontrol registers — P0DIR, P1DIR, P2DIR.	179
14.6.4 The input and output options registers – POCON, P1CON, P2CON	
15 Interrupt	
15.1 Feature	
15.2 Block diagram.	
15.3 Functional description	
15.4 SFR registers	
15.4.1 Interrupt Enable 0 Register – IEN0	187
15.4.2 Interrupt Enable 1 Register – IEN1	
15.4.3 Interrupt Priority Registers – IP0, IP1	
15.4.4 Interrupt Request Control Registers – IRCON	
16 PWM	191
16.1 Features	191
16.2 Block diagram	
16.3 Functional description	
16.4 SFR registers	
16.4.1 PWM control register–PWMCON	
16.4.2 PWM frequency pre-scale factor register–PWMCON1	
16.4.3 PWM control initial and active level register–PWMCR0, PWMCR1	
16.4.4 PWM control the inactive level width registers-PWMDC0,	
PWMDC2,PWMDC3,PWMDC4,PWMDC5	
17 Package size	
17.1.1 Uses the Sop16 package, with mAtt tin plating	

1 Introduction

The KT8P01 is a member of the low-cost, high-performance family of intelligent 2.4 GHz RF transceivers with embedded microcontrollers. The KT8P01 is optimized to provide a single chip solution for Ultra Low Power (ULP) wireless applications. The combination of processing power, memory, low power oscillators, real-time counterand arange of power saving modes provides an ideal platform for implementation of RF protocols. Benefits of using KT8P01 include tighter protocol timing, security, lower power consumption and improved co-existence performance. For the application layer the KT8P01 offers a rich set of peripherals including: SPI (master and slave), UART, PWM, USB, and so on.

1.1 Pad assignment

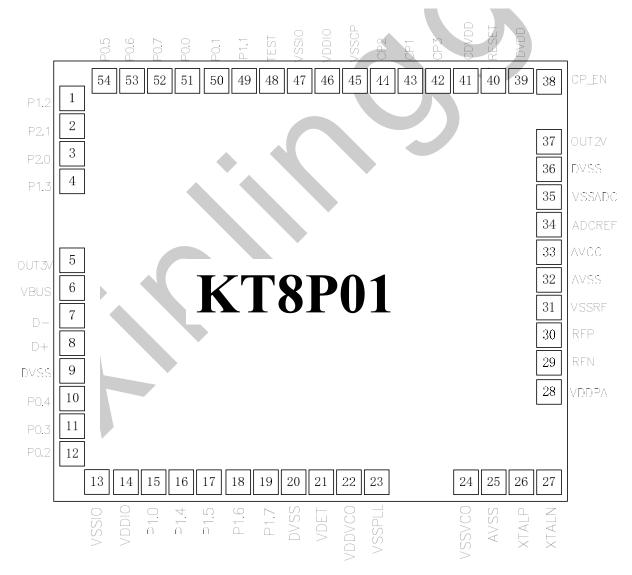


Figure 1.1 KT8P01 pad assignment

1.2 Pad function

Table1.1 KT8P01 pad function

Pin#	Name	Description
1	P1.2	General purpose IO
2	P2.1	General purpose IO
3	P2.0	General purpose IO
4	P1.3	General purpose IO
5	OUT3V	3.3V supply output for de-coupling, for USB dongle
6	VBUS	USB 5V power
7	D-	USB data-
8	D+	USB data+
9	DVSS	digital ground
10	P0.4	General purpose IO
11	P0.3	General purpose IO
12	P0.2	General purpose IO
13	VSSIO	IO ground
14	VDDIO	IO power
15	P1.0	General purpose IO
16	P1.4	General purpose IO
17	P1.5	General purpose IO
18	P1.6	General purpose IO
19	P1.7	General purpose IO
20	DVSS	Digital ground
21	VDET	Battery voltage detection
22	VDDVCO	VCO power
23	VSSPLL	PLL ground
24	VSSVCO	VCO ground
25	AVSS	Analog ground
26	XTALP	Crystal+
27	XTALN	Crystal-
28	VDDPA	PA power
29	RFN	RF-
30	RFP	RF+
31	VSSRF	RF ground
32	AVSS	Analog ground
33	AVCC	Analog power
34	ADCREF	ADC reference, connected to de-coupling capacitor
35	VSSADC	ADC ground
36	DVSS	digital ground
37	OUT2V	1.9V supply output for de-coupling, for low voltage sensor

38	CP_EN	Tie high: enable charge pump; tie low: disable charge pump		
39	DVDD	Digital power		
40	RESET	Reset for MCU, active low		
41	CDVDD	Internal digital supply output for de-coupling		
42	CP3	charge pump output for de-coupling		
43	CP1	CP1 and CP2 connected to fly capacitor of charge pump		
44	CP2	CP1 and CP2 connected to fly capacitor of charge pump		
45	VSSCP	Charge pump ground		
46	VDDIO	IO power		
47	VSSIO	IO ground		
48 TEST Weak pull down in the PAD;				
40	1251	1 for OTP write & test mode; floating for normal work		
49	P1.1	General purpose IO		
50	P0.1	General purpose IO		
51	P0.0	General purpose IO		
52	P0.7	General purpose IO		
53	P0.6	General purpose IO		
54	P0.5	General purpose IO		

Note: CP1, CP2, CP3 and CP_EN have different bonding and off-chip device for different applications:

- (1) If the power supply is higher than 3.0v, the internal charge pump is not needed, CP1 and CP2 can be floating, CP3 should be connected to power, CP_EN is bonded to ground;
- (2) If the power supply is lower than 3.0v, the internal charge pump is needed for OTP, 1uF capacitor should be put between CP1 and CP2, 10uF capacitor should be put between CP3 and ground, CP_EN is bonded to power;

If a unified off-chip circuit is needed for all applications, the way of (2) can be used.

Package

1.3

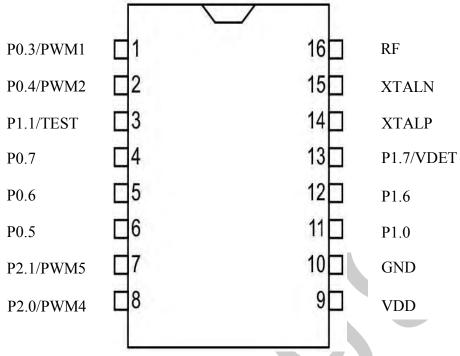
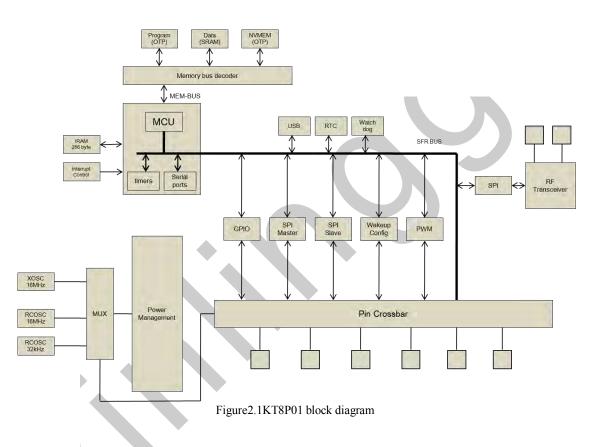


Figure1.3 KT8P01 SOP16

- ※ 注意: 1. SOP16 的封装因没有封装出内部 DC/DC,所以工作电压范围为 2.5V-3.6V。
- ※ 2. 因为 Test 和 P1.1 共用了,所以封装芯片内部 P0.2 对 GND 短路了,所以在编程时请不用使用 P0.2 并做对应处理。

2 Product overview

2.1 Features


Features of the KT8P01 include:

- Fast 8-bit microcontroller:
 - > Intel MCS 51 compliant instruction set
 - > Reduced instruction cycle time, up to 12 times compared to legacy 8051
- Memory:
 - > Program memory: 16 kB of OTP memory with security features
 - Internal RAM: 256Byte
 - > User Data memory: 256 byte of on-chip RAM memory
 - A number of on-chip hardware resources are available through programmable multi-purpose input/output pins:
 - > 18GPIO
 - SPI master
 - SPI slave
 - Full duplex serial port
 - > 6PWMs
 - External interrupts
 - Timer inputs
 - High performance 2.4 GHz RF transceiver
 - True single chip GFSK transceiver
 - > Enhanced ShockBurst[™] link layer support in HW:
 - Packet assembly/disassembly
 - ♦ Address and CRC computation
 - Auto ACK and retransmit
 - > On the air data rate 500 kbps, 1 Mbps or 2 Mbps
 - > 125 RF channels operation, with 79 (2.402 GHz -2.480 GHz) channels within 2.400-2.4835 GHz
 - > Short switching time enable frequency hopping
- System reset and power supply monitoring:
 - > On-chip power-on and brown-out reset
 - Watchdog timer reset
 - Reset from pin
 - > Power-fail comparator with programmable threshold and interrupt to MCU
- On-chip timers:
 - > Three16-bit timers/counters operating at the system clock (sources from the 16 MHz on-chip oscillators)
 - Timer 0, Timer 1 are compatible to standard 8051
 - Timer 2 supports timer mode and compare/capture mode
 - One 24-bit timer/counter operating at the low frequency clock (32kHz)
- On-chip oscillators:

- 16 MHz crystal oscillator XOSC16M
- > 16 MHz RC-oscillator RCOSC16M
- > 32kHz RC-oscillator RCOSC32K
- Power management function:
 - > Low power design supporting fully static stop/ standby
 - Programmable MCU clock frequency from 125 kHz to 16 MHz
 - > On chip voltage regulators supporting low power mode
 - > Watchdog and wakeup functionality running in low power mode

2.2 Blocks

2.3 Absolute maximum ratings

Note: Exceeding one or more of the limiting values may cause permanent damage to KT6R00.

Operating conditions	Minimum	Maximum	Units		
Supply voltages					
V _{DD}	-0.3	3.6	V		
Vss		0	V		
Input voltage					
Vı	-0.3	3.6	V		
Output voltage					
Vo	V_{SS} to V_{DD}	V_{SS} to V_{DD}			

Temperatures				
Operating Temperature	-40	+85	°C	
Storage Temperature	-40	+125	°C	

Table2.4.1 Absolute maximum ratings

2.4 Operating conditions

Symbol	Parameter(condition)	Notes	Min.	Тур.	Max.	Units
V _{DD}	Supply voltage		1.8		3.6	V
V _{DD}	Supply voltage if input signals>3.6V		1.8		3.6	V
TEMP	Operating Temperature		-40	+27	+85	°C

Table 2.5.1 Operating conditions

2.5 Electrical specifications

Power Consumption

	···· · · · · · · · · · · · · · · · · ·						
No.	Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
1	Current in deep sleep	Ids	Deep sleep current		3		uA
2	Current in register retention	Ireg	Register retention		12		uA
3	Current in standby(@ 2Mbps MCU)	Isb	Standby(@ 2Mbps MCU)		500		uA

RFperformance

<u> </u>							
No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Current in TX 0dBm	Itx	PA under 0dBm		18.5		mA
2	Current in TX -18dBm	Itx	PA under -18dBm		12		mA
3	Current in RX 1Mbps	Irx	RX mode		19.5		mA
4	Current in RX 0.5Mbps	Irx	RX mode		19.5		mA
5	Operation frequency	Freq		2400		2525	MHz
6	PLL frequency step	Delta F			1		MHz
7	Freq deviation@500kbps	Df			160		KHz
8	Freq deviation@1Mbps	Df			160		KHz
9	Freq deviation@2Mbps	Df			320		KHz

Receiver performance

.

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Max RX signal	Pin,max	<0.1% BER		-10		dBm
2	500Kbps	Sensitivity	<0.1%BER		-90		dBm
3	1Mbps	Sensitivity	<0.1%BER		-88		dBm
4	2Mbps	Sensitivity	<0.1%BER		-85		dBm

Transmitter performance

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Max Output Power	Pmax	50ohm antenna		0	+8	dBm
2	Min Output Power	Pmin	50ohm antenna		-30		dBm
3	RF power control range	Prange	50ohm antenna		38		dB

xtal performance

No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	Crystal Frequency	Fxtal		16	16	16	MHz
2	Tolerance	Dfxtal		-60		+60	ppm
3	Load capacitance	Cxtal			12		pF
DC char	acteristic						

DC characteristic

.

DC char	acteristic						
No.	Parameter	Symbol	Conditions	MIN	ТҮР	MAX	UNIT
1	HIGH level input	Vhigh		0.7VDD		3.6	V
2	Low level input	Vlow		0		0.3VDD	V

3 RF transceiver

The KT8P01uses the same 2.4 GHz GFSK RF transceiver with embedded protocol engine. The RF transceiver is designed for operation in the world wide ISM frequency band at 2.400–2.4835 GHz and is very well suited for ultra-low power wireless applications.

The RF transceiver module is configured and operated through the RF transceiver map. This register map is accessed by the MCU through a dedicated on-chip Serial Peripheral interface (SPI) and is available in all power modes of the RF transceiver module. The embedded protocol engine enables data packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Data FIFOs in the RF transceiver module ensure a smooth data flow between the RF transceiver module and the KT8P01MCU.

The rest of this chapter is written in the context of the RF transceiver module as the core and the rest of the KT8P01 as external circuitry to this module.

3.1 Features

Features of the RF transceiver include:

- General
 - > Worldwide 2.4 GHz ISM band operation
 - Common antenna interface in transmit and receive
 - GFSK modulation
 - > 500 kbps, 1 Mbpsand 2 Mbps on air data rate
- Transmitter
 - Programmable output power: 8, 5, 0, -6, -12, -30dBm(8dBm@3V)
 - > 18.5mA at 0dBm output power
- Receiver
 - Integrated channel filters
 - > 19.5mA at 2 Mbps
 - -85dBm sensitivity at 2 Mbps
 - -88dBm sensitivity at 1 Mbps
 - -90dBm sensitivity at 500 kbps
- RF Synthesizer
 - > Fully integrated synthesizer
 - > 1 MHz frequency programming resolution
 - > Accepts low cost ±60ppm 16 MHz crystal
 - > 1 MHz non-overlapping channel spacing at 1 Mbps
 - > 2 MHz non-overlapping channel spacing at 2 Mbps
- Protocol Engine
 - > 1 to 32 bytes dynamic payload length
 - Automatic packet handling (assembly/disassembly)
 - > Automatic packet transaction handling (auto ACK, auto retransmit)

6 data pipe MultiSlave for 6:1 star networks

3.2 Block

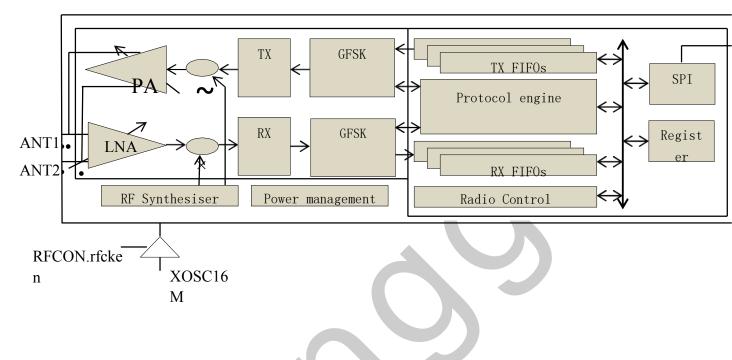


Fig.3.1 RF transceiver block diagram

3.3 Functional description

This section describes the different operating modes of the RF transceiver and the parameters used to control it.

The RF transceiver module has a built-in state machine that controls the transitions between the different operating modes. The state machine is controlled by SFR register RFCON and RF transceiver register CONFIG.

3.4 **Operational Modes**

The KT8P01 has a built-in state machine that controls the transitions between the chip's operating modes. The state machine takes input from user defined register values and internal signals.

The state diagrams in Figure 3.2 shows the operating modes and how theyfunction. There are three types of distinct states highlighted in the state diagram:

- Recommended operating mode: is a recommended state used during normal operation.
- Possible operating mode: is a possible operating state, but is not used during normal operation.
- Transition state: is a time limited state used during start upof the oscillator and settling of the PLL.

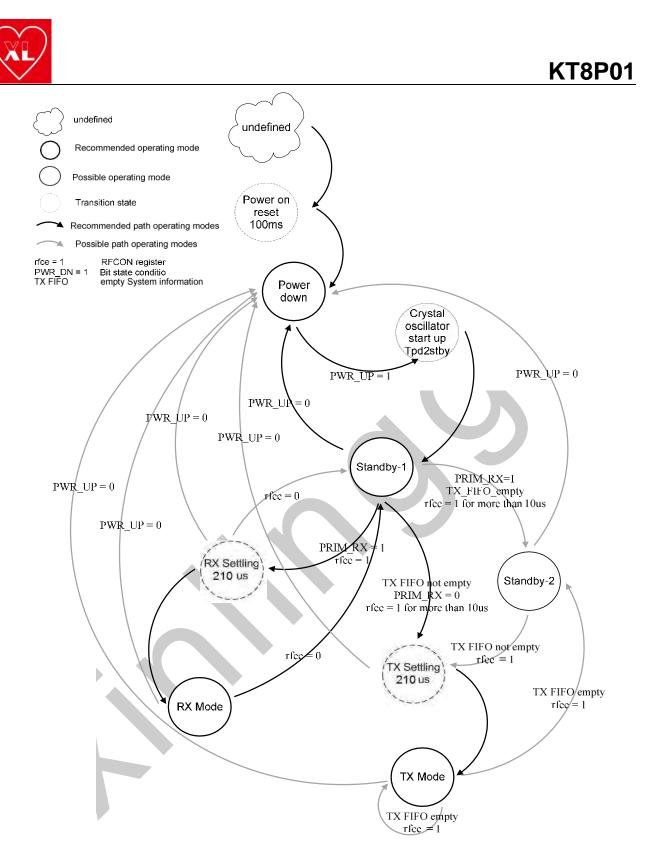


Fig. 3.2 Radio control state diagram

Note: TX/RX settling time can be set to 140us minimum

.

3.4.1 PowerDown Mode

In power down mode, the KT8P01 is disabled using minimal current consumption. All register values available are maintained and the SPI is kept active, enabling change of configuration and the uploading/down-loading of data registers. For starting up times see Table3.2. Power down mode is entered when the chip is in deep sleep or register retention mode (Details are descripted in chapter 7).

3.4.2 Standby Modes

3.4.2.1 Standby-I mode

When the chip is power up or wake up from deep sleep or register retention mode, the device enters standby-I mode. Standby-I mode is used to minimizeaverage current consumption while maintaining short start up times. In this mode only part of the crystal oscillator is active. Change to active modes only happens if CE is set high and when CE is set low, the KT8P01 returns to standby-I mode from both the TX and RX modes.

3.4.2.2 Standby-II mode

In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. The KT8P01enters standby-II mode if CE is held high on a PTX device with an empty TX FIFO. If a new packet is uploaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the normal PLL settling delay (default 210µs, can be set to 140us). Register values are maintained and the SPI can be activated during both standby modes.

Notice: From Standby-I mode to standby-II mode CE more than 20us

3.4.3 RX mode

The RX mode is an active mode where the KT8P01 radio is used as a receiver. To enter this mode, the chip must have PRIM_RX bit and the CE pin set high.

In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded.

The chip remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features in the baseband protocol engine are enabled, the chip can enter other modes in order to execute the protocol.

In RX mode a Received Power Detector (RPD) signal is available. The RPD register is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is $-100 \sim +10$ dBm. The RPD has about +/-5dBm deviation from the real level.

3.4.4 TX mode

The TX mode is an active mode for transmitting packets. To enter this mode, the chip must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the CE for more than 20µs.

The KT8P01 stays in TX mode until it finishes transmitting a packet. If CE = 0, the chip returns to standby-I mode. If CE = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the KT8P01 remains in TX mode and transmits the next packet. If the TX FIFO is empty the chip goes into standby-II mode.

3.4.5 Operational modes configuration

Mode	PWR_UP	PRIM_RX	CE input pin	FIFO state
	register	register		
RX mode	1	1	1	
TX mode	1	0	1	Data TX FIFO. Will empty all level in TX
				FIFOs ^a
TX mode	1	0	Minimum 20us high	Data TX FIFO. Will empty one level in TX
			pulse	FIFOs ^b
Standby-2	1	0	1	TX FIFO empty
Standby-1	1	-	0	No ongoing packet transmission
Power Down	0	-	-	-

The following (table 1) describes how to configure the operational modes:

Table 3.1 the KT8P01 main modes

a. If CE is held high all TX FIFOs are emptied and all necessary ACK and possible retransmits are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty when the CE is still high, the chip enters standby-II mode. In this mode the transmission of a packet is started as soon as the CSN is set high after an upload (UL) of a packet to TX FIFO.

b. This operating mode pulses the CE high for at least $20\mu s$. This allows one packet to be transmitted. This is the normal operating mode. After the packet is transmitted, the chip enters standby-1 mode.

3.4.6 Timing Information

The timing information in this section relates to the transitions between modes and the timing for the CE pin. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (max. 210µs), as described in Table 3.2.

Name	The chip	Notes	Max.	Min.	Comments
$T_{pd2stby}$	Power down→Standby mode		150us		With external clock
		а	1.5ms		External crystal, Ls< 30mH
			3ms		External crystal, Ls< 60mH
			4.5ms		External crystal, Ls< 90mH

T _{stby2a}	Standby mode \rightarrow TX/RX mode	210us		
Thee	Minimum CE high		20us	
T _{pece2csn}	Delay from CE positive edge to CSN		4us	
	low			

a. See crystal specifications.

Tab. 3.2 operational timing of the KT8P01 chip

KT8P01 to go from power down mode to TX or RX mode it must first pass through stand-by mode. There must be a delay of Tpd2stby (see Table 3.2.) after the chip leaves power down mode before the RFCON.rfce is set high.

Note: If VDD is turned off the register value is lost and you must configure chip before entering the TX or RX modes.

3.4.7 Air data rate

The air data rate is the modulated signaling rate the chip uses when transmitting and receiving data. It can be 500kbps, 1Mbps or2Mbps. Using lower air data rate gives better receiver sensitivity than higher air data rate. But, high air data rate gives lower average current consumption and reduced probability of on-air collisions. The air data rate is set by the RF_DR bit in the RF_SETUP register. A transmitter and a receiver must be programmed with the same air data rate to communicate with each other.

3.4.8 **RF channel frequency**

The RF channel frequency determines the center of the channel used by the chip. The channel occupies a bandwidth of less than 1MHz at 250kbps and 1Mbps and a bandwidth of less than 2MHz at 2Mbps. The chip can operate on frequencies from 2.400GHz to 2.525GHz. The programming resolution of the RF channel frequency setting is 1MHz.

At 2Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency setting. To ensure non-overlapping channels in 2Mbps mode, the channel spacing must be 2MHz or more. At 1Mbps the channel bandwidth is the same as or lower than the resolution of the RF frequency.

The RF channel frequency is set by the RF_CH register according to the following formula:

$F0=2400 + RF_CH [MHz]$

You must program a transmitter and a receiver with the same RF channel frequency to communicate with each other.

3.4.9 Received Power Detector measurements

Received Power Detector (RPD), located in register 09, is a signed number which corresponds to different level of received power in dBm. The highest bit of RPD is sign bit. The range of the received power is $-100 \sim +10$ dBm.

The RPD can be read out at any time while the chip is in received mode. This offers a snapshot of the current received power level in the channel. The status of RPD is correct when RX mode is enabled and after a wait time of $T_{stby2a}+T_{delay_AGC}=210$ where the RX gain varies over temperature which means that the RPD value also varies over temperature.

3.4.10 PA control

The PA (Power Amplifier) control is used to set the output power from the chip power amplifier. In TX mode PA control has four programmable steps, seeTable 3.3.

The PA control is set by the RF_PWR bits in theRF_SETUP register.

SPI RF-SETUP	RF output power	DC current
(RF_PWR)		consumption
1111	8dBm	40mA
1000	5dBm	25mA
0011	0dBm	18.5mA
0001	-6dBm	16mA

Conditions: VDD = 3.0V, VSS = 0V, $TA = 27^{\circ}C$

Note: DC current above is TX current, including all TX block

Tab.3.3 RF output power setting for the KT8P01

3.4.11 RX/TX control

The RX/TX control is set by PRIM_RX bit in the CONFIG register and sets the KT8P01 chip in transmit/receive mode.

3.5 **Protocol Engine**

Protocol engine is a packet based data link layer that features automatic packet assembly and timing, automatic acknowledgement and retransmissions of packets. Protocol engine enables the implementation of ultralow power and high performance communication. The Protocol engine features enable significant improvements of power efficiency for bi-directional and uni-directional systems, without adding complexity on the host controller side.

3.5.1 Features

The main features of Protocol engine are:

- > 1 to 32 bytes dynamic payload length
- > Automatic packet handling
- Automatic packet transaction handling
 - Auto Acknowledgement with payload
 - Auto retransmit
- > 6 data pipe for 1:6 star networks

3.6 Protocol engine overview

Protocol engine uses self-defined protocol for automatic packet handling and timing. During transmit, Protocol engine assembles the

packet and clocks the bits in the data packet for transmission. During receive, Protocol engine constantly searches for a valid address in the demodulated signal. When Protocol engine finds a validaddress, it processes the rest of the packet and validates it by CRC. If the packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and timing is controlled by protocol engine.

Protocol engine features automatic packet transaction handling for the easy implementation of a reliable bi-directional data link. A protocol engine packet transaction is a packet exchange between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other transceiver acting as the Primary Transmitter (PTX). A protocol engine packet transaction is always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has received an acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the ACK packet enabling a bi-directional data link.

The automatic packet transaction handling works as follows:

1. You begin the transaction by transmitting a data packet from the PTX to the PRX. Protocol engine automatically sets the PTX in receive mode to wait for the ACK packet.

2. If the packet is received by the PRX, Protocol engine automatically assembles and transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode.

3. If the PTX does not receive the ACK packet immediately, Protocol engine automatically retransmits the original data packet after a programmable delay and sets the PTX in receive mode to wait for the ACK packet.

In Protocol engine it is possible to configure parameters such as the maximum number of retransmits and the delay from one transmission to the next retransmission. All automatic handling is done without the involvement of the MCU.

3.7 Protocol engine packet format

The format of the Protocol engine packet is described in this section. The Protocol engine packet contains a preamble field, address field, packet control field, payload field and a CRC field. Figure 3.3 shows the packet format with MSB to the left.

Preamble 1 byte	Address 4-5 byte	2byte guard	Packet control field 9 bit	Payload 0-32 bytes	CRC 1-2 bytes			
Figure 3 A Protocol engine packet with payload (0-32 bytes)								

3.7.1 Preamble

The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver.

3.7.2 Address

This is the address for the receiver. An address ensures that the packet is detected and received by the correct receiver, preventing accidental cross talk between multiple KT8P01 systems. You can configure the address field width in the AW register to be 5 bytes or 4 bytes address.

3.7.3 Guard

Figure 3.3 shows the format of the 2bytesguard packet has better synchronous characteristics.

3.7.4 Packet Control Field (PCF)

Figure 3.4 shows the format of the 9 bit packet control field, MSB to the left.

Payload length 6bit	PID 2bit	NO_ACK 1bit		
Eigene 2.4 Deplet control field (DCE)				

Figure 3.4 Packet control field (PCF)

The packet control field contains a 6 bit payload length field, a 2 bit PID (Packet Identity) field and a 1 bit NO_ACK flag.

Payload length

This 6 bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes.

Coding: 00000 = 0 byte (only used in empty ACK packets. The 0 length packet also need to be read out use R_RX_PAYLOAD with no data following) 100000 = 32 byte, 100001 = Don't care

This field is only used if the Dynamic Payload Length function is enabled.

PID (Packet identification)

The 2 bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX operation from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fieldare used by the PRX operation to determine if a packet is retransmitted or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, the RF transceiver compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

No Acknowledgment flag (NO_ACK)

The Selective Auto Acknowledgement feature controls the NO_ACK flag.

This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged.

On the PTX you can set the NO_ACK flag bit in the Packet Control Field with this command: W TX PAYLOAD NOACK

However, the function must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit. When you use this option, the PTX goes directly to standby-I mode after transmitting the packet. The PRX does not transmit an ACK packet when it receives the packet.

3.7.5 Payload

The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted on-air when it is uploaded to the device.

Protocol engine provides two alternatives for handling payload lengths; static and dynamic.

The default is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side.

Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means that for a system with different payload lengths it is not necessary to scale the packet length to the longest payload.

With the DPL feature the KT8P01 can decode the payload length of the received packet automatically instead of using theRX_PW_Pxregisters. The MCU can read the length of the received payload by using the R_RX_PL_WID command.

Note: Always check if the packet width reported is 32 bytes or shorter when using the R_RX_PL_WID command. If its width is longer than 32 bytes then the packet contains errors and must be discarded. Discard the packet by using the Flush_RXcommand.

In order to enable DPL the EN_DPL bit in the FEATURE register must be enabled. In RX mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set.

3.7.6 CRC (Cyclic Redundancy Check)

The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field and Payload.

The polynomial for 1 byte CRC is $X^8 + X^2 + X + 1$. Initial value 0Xff.

The polynomial for 2 byte CRC is $X^{16} + X^{12} + X^5 + 1$. Initial value 0Xffff.

The number of bytes in the CRC is set by the CRCO bit in the CONFIG register. No packet is accepted by protocol engine if the CRC fails.

3.7.7 Automatic packet assembly

The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC to make a complete packet before it is transmitted.

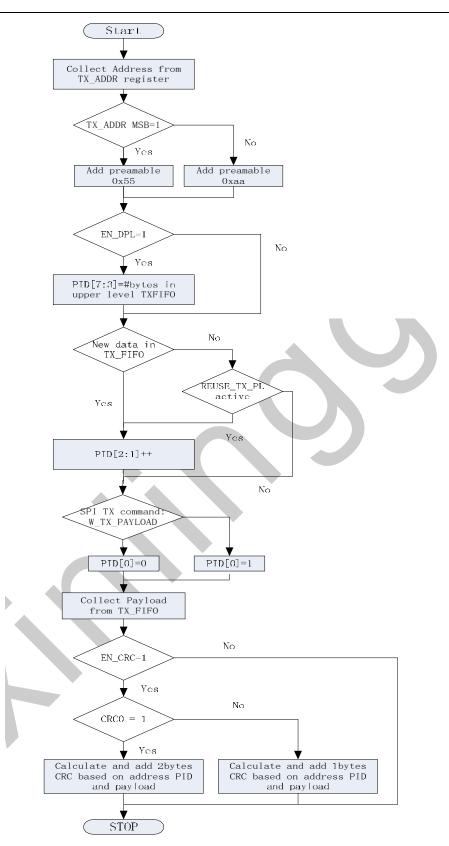


Figure 3.5 Automatic packetassembly

3.7.8 Automatic packet disassembly

After the packet is validated, Protocol engine disassembles the packet and loads the payload into the RX FIFO, and asserts the RX_DR IRQ.

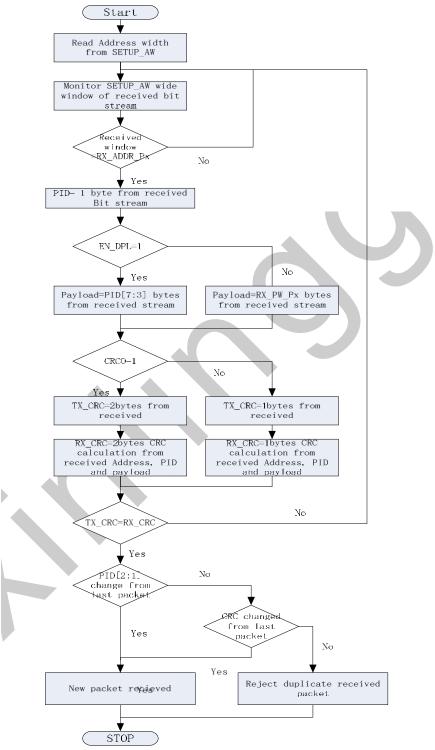
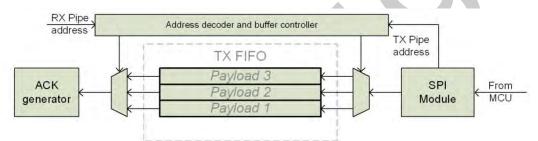


Figure 3.6Automatic packet disassembly

3.8 Automatic packet transaction handling


Protocol engine features two functions for automatic packet transaction handling; auto acknowledgement and auto re-transmit.

3.8.1 Auto Acknowledgement

Auto Acknowledgement is a function that automatically transmits an ACK packet to the PTX after it has received and validated a packet. The Auto Acknowledgement function reduces the load of the system MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting the EN_AA register.

Note: If the received packet has the NO_ACK flag set, auto acknowledgement is not executed.

An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the payload by clocking it into the TX FIFO by using the W_ACK_PAYLOAD command. The payload is pending in the TX FIFO (PRX) until a new packet is received from the PTX. The RF transceiver can have three ACK packet payloads pending in the TX FIFO (PRX) at the same time.

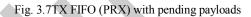


Figure 3.7shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From the MCU the payload is clocked in with the W_ACK_PAYLOAD command. The address decoder and buffer controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is received, the address decoder and buffer controller are notified with the PTX address. This ensures that the right payload is presented to the ACK generator.

If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in-first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH_TX command.

In order to enable Auto Acknowledgement with payload the EN_ACK_PAY bit in the FEATURE register must be set.

3.8.2 Auto Retransmission (ART)

The auto retransmission is a function that retransmits a packet if an ACK packet is not received. It is used in an Auto Acknowledgement system on the PTX. When a packet is not acknowledged, you can set the number of times it is allowed to retransmit by setting the ARC bits in the SETUP_RETR register. PTX enters RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time the PTX is in RX mode is based on the following conditions:

• Auto Retransmit Delay (ARD) has elapsed.

- No address match within 256µs.
- After received packet (CRC correct or not) if address match within 256µs.

The RF transceiver asserts the TX_DS IRQ when the ACK packet is received.

The RF transceiver enters standby-I mode if there is no more un-transmitteddata in the TX FIFO and the CEpin is low. If the ACK packet is not received, the RF transceiver goes back to TX mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is received, or the maximum number of retransmits is reached.

Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction. You reset ARC_CNT by initiating a new transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. You reset PLOS_CNT by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality.

The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX. ARD is set in SETUP_RETR register in steps of 256µs. A retransmit is made if no ACK packet is received by the PTX.

There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must never be shorter than the sum of the startup time and the time on-air for the ACK packet.

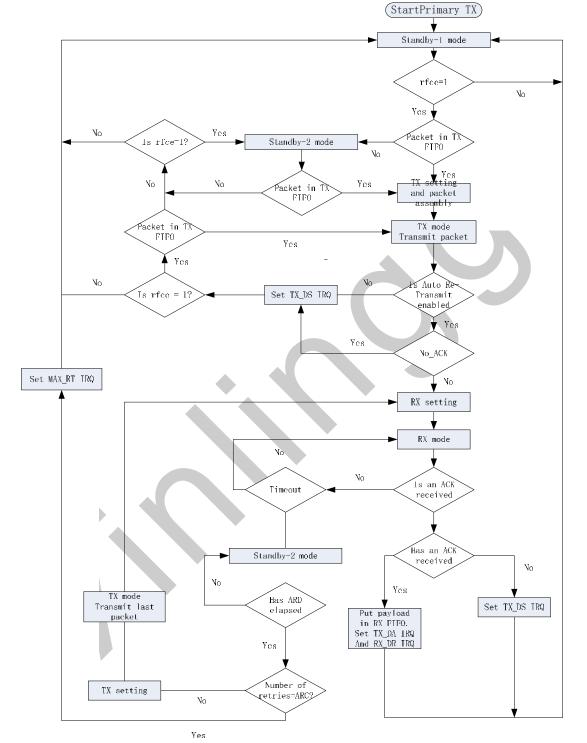
- For 2 Mbps data rate and 5-byte address; 15 byte is maximum ACK packet payload length for ARD=256µs (reset value).
- For 1 Mbps data rate and 5-byte address; 5 byte is maximum ACK packet payload length for ARD=256µs (reset value).

ARD=512µs is long enough for any ACK payload length in 1 or 2 Mbps mode.

	- Jos and the second seco								
	ARD	ACK packet size (in byte)							
	1536us	All ACK payload sizes							
	1280us	<=24							
	1024us	<=16							
	768us	<=8							
	512us	Empty ACK with no payload							

• For 500kbps data rate and 5-byte address the following values apply:

Table 3.4 Maximum ACK payload length for different retransmit delays


As an alternative to Auto Retransmit it is possible to manually set the RF transceiver to retransmit a packet a number of times. This is done by the REUSE_TX_PL command. The MCU must initiate each transmission of the packet with a pulse on the CE pin when this command is used.

3.9 Protocol engine flowcharts

This section contains flowcharts outlining PTX and PRX operation in Protocol engine.

3.9.1 PTXoperation

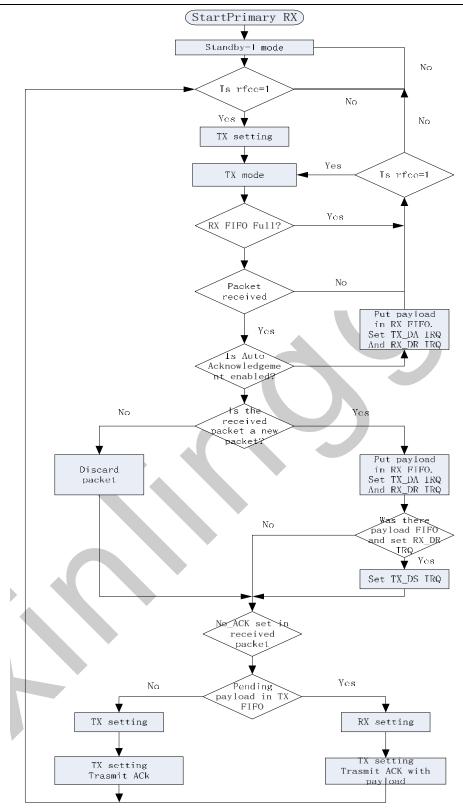
The flowchart in Figure 3.8 outlines how a RF transceiver configured as a PTX behaves after entering standby-I mode.

Note: Protocol engine operation is outlined with a dashed square.

Activate PTX mode by setting the rfcein the RFCON register high. If there is a packet present in the TX FIFO the RF transceiver enters TX mode and transmits the packet. If Auto Retransmit is enabled, the state machine checks if the NO_ACK flag is set. If it is

not set, the RF transceiver enters RX mode to receive an ACK packet. If the received ACK packet is empty, only the TX_DS IRQ is asserted. If the ACK packet contains a payload, both TX_DS IRQ and RX_DR IRQ are asserted simultaneously before the RF transceiver returns to standby-I mode.

If the ACK packet is not received before timeout occurs, the RF transceiver returns to standby-II mode. It stays in standby-II mode until the ARD has elapsed. If the number of retransmits has not reached the ARC, the RF transceiver enters TX mode and transmits the last packet once more.


While executing the Auto Retransmit feature, the number of retransmits can reach the maximum number defined in ARC. If this happens, the RF transceiver asserts the MAX_RT IRQ and returns to standby-I mode.

If the rfce bit in the RFCON register is high and the TX FIFO is empty, the RF transceiver enters Standby-II mode.

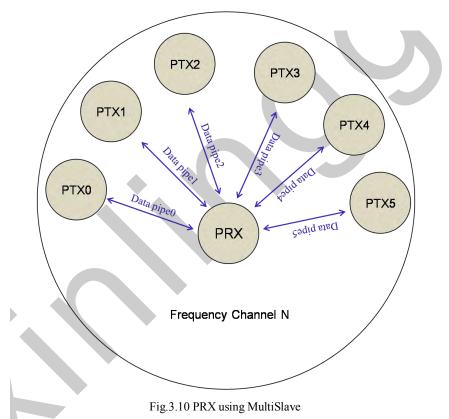
3.9.2 PRX operation

The flowchart in Figure 3.9 outlines how a RF transceiver configured as a PRX behaves after entering standby-I mode.

Note: Protocol engine operation is outlined with a dashed square.

Figure 3.9 PRX operations in Protocol engine

Activate PRX mode by setting the rfce bit in the RFCON register high. The RF transceiver enters RX mode and starts searching for packets. If a packet is received and Auto Acknowledgement is enabled, the RF transceiver decides if the packet is new or a copy of a



previously received packet. If the packet is newpayload is made available in the RX FIFO and the RX_DR IRQ is asserted. If the last received packet from the transmitter is acknowledged with an ACK packet with payload, the TX_DS IRQ indicates that the PTX received the ACK packet with payload. If the No_ACK flag is not set in the received packet, the PRX enters TX mode. If there is a pending payload in the TX FIFO it is attached to the ACK packet. After the ACK packet is transmitted, the RF transceiver returns to RX mode.

A copy of a previously received packet might be received if the ACK packet is lost. In this case, the PRX discards the received packet and transmits an ACK packet before it returns to RX mode.

3.10 MultiSlave

MultiSlave is a feature used in RX mode that contains a set of six parallel data pipes with unique addresses. A data pipe is a logical channel in the physical RF channel. Each data pipe has its own physical address (data pipe address) decoding in the RF transceiver.

The RF transceiver configured as PRX (primary receiver) can receive data addressed to six different data pipes in one frequency channel as shown in Figure 3.10. Each data pipe has its own unique address and can be configured for individual behavior.

Up to six RF transceivers configured as PTX can communicate with one RF transceiver configured as PRX. All data pipe addresses are searched for simultaneously. Only one data pipe can receive a packet at a time. All data pipes can perform Protocol engine functionality.

The following settings are common to all data pipes:

- CRC enabled/disabled (CRC always enabled when Protocol engine is enabled)
- CRC encoding scheme
- RX address width

- · Frequency channel
- Air data rate
- LNA gain

The data pipes are enabled with the bits in the EN_RXADDR register. By default only data pipe 0 and 1 are enabled. Each data pipe address is configured in the RX_ADDR_PX registers.

Note: Always ensure that none of the data pipes have the same address.

Each pipe can have up to a 5 byte configurable address. Data pipes 0-5 share the four most significant address bytes. The LSByte must be unique for all six pipes. Figure 3.11 is an example of how data pipes 0-5 are addressed. Only pipe0 can have up to a 5 byte configurable address, other's pipes have 1bytes configurable address.

	Byte4	Byte3	Byte2	Byte1	Byte0
Data pipe O (RX_ADDR_PO)	0xE7	OxD3			
Data pipe 1 (RX_ADDR_P1)				025	0
	0xE7	0xD3	OxF0	0x35	0xC1
	ĮĻ	ĮĻ			
Data pipe 2 (RX_ADDR_P2)	0xE7	0xD3	0xF0	0 x35	0xC2
	·Ţ			Ţ	J
Data pipe 3 (RX_ADDR_P3)	0xE7	0xD3	0xF0	0 x35	0xC3
Data pipe 4 (RX_ADDR_P4)	0xE7	0xD3	0xF0	0 x35	0xC4
Data pipe 5 (RX_ADDR_P5)	0xE7	0xD3	0xF0	0x35	0xC5

Figure 3.11 Addressing data pipes 0-5

The PRX, using MultiSlave and Protocol engine, receives packets from more than one PTX. To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet. Figure 3.12 is an example of an address configuration for the PRX and PTX. On the PRX the RX_ADDR_Px, defined as the pipe address, must be unique. On the PTX the TX_ADDR must be the same as the RX_ADDR_P0 and as the pipe address for the designated pipe.

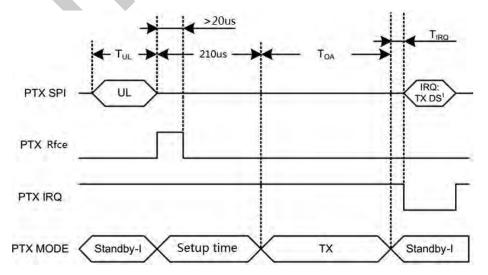

Addr data Pipe 0 (RX_ADDR_P0):	0x7046202800
Addr data Pipe 1 (RX_ADDR_P1):	0x7046202801
Frequency Channel N Addr data Pipe 2 (RX_ADDR_P2):	0x7046202802
Addr data Pipe 3 (RX_ADDR_P3):	0x7046202803
Addr data Pipe 4 (RX_ADDR_P4):	0x7046202804
Addr data Pipe 5 (RX_ADDR_P5):	0x7046202805

Figure 3.12 Example of data pipe addressing in MultiSlave

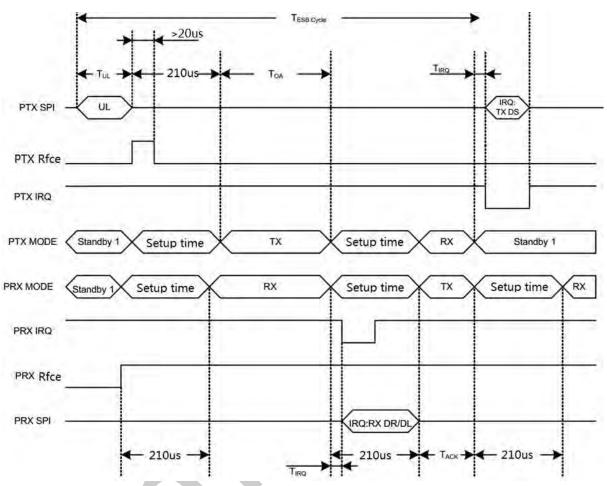
Only when a data pipe receives a complete packet can other data pipes begin to receive data. When multiple PTXs are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once.

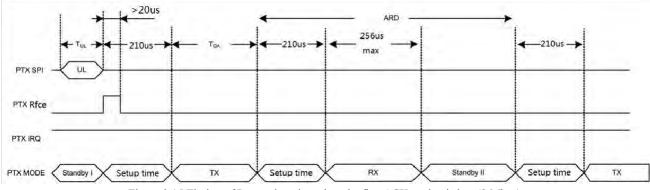
3.11 Protocol engine timing

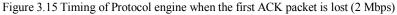
This section describes the timing sequence of Protocol engine and how all modes are initiated and operated. The Protocol engine timing is controlled through the Data and Control interface. The RF transceiver can be set to static modes or autonomous modes where the internal state machinecontrols the events. Each autonomous mode/sequence ends with a RFIRQ interrupt. All the interrupts are indicated as IRQ events in the timing diagrams.

1 IRQ if No Ack is on.

T_{IRQ}=3us @ 1Mbps, @2Mbps

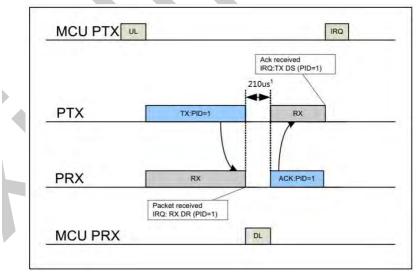



Figure 3.13Transmitting one packet with NO_ACK on


Figure 3.14 Timing of Protocol engine for one packet upload(2Mbps)

In Figure 3.14, the transmission and acknowledgement of a packet is shown. The PRX operation activates RX mode (rfce=1), and the PTX operation is activated in TX mode (rfce=1 for minimum 20μ s). After 210μ s the transmission starts and finishes after the elapse of T_{OA}.

When the transmission ends the PTX operation automatically switches to RX mode to wait for the ACK packet from the PRX operation. When the PRX operation receives the packet it sets the interrupt for the host MCU and switches to TX mode to send an ACK. After the PTX operation receives the ACK packet it sets the interrupt to the MCU and clears the packet from the TX FIFO. In Figure 3.15, the PTX timing of a packet transmission is shown when the first ACK packet is lost.


3.12 Protocol engine transaction diagram

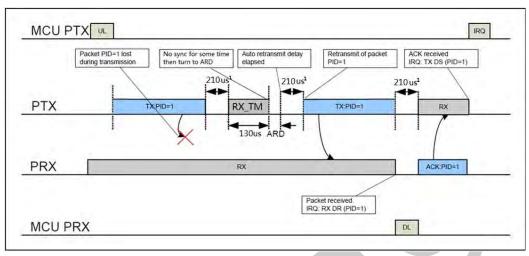
This section describes several scenarios for the Protocol engine automatic transaction handling. The call outs in this section's figures indicate the IRQs and other events. For MCU activity the event may be placed at a different timeframe.

Note: The figures in this section indicate the earliest possible download (DL) of the packet to the MCU and the latest possible upload (UL) of payload to the transmitter.

3.12.1 Single transaction with ACK packet and interrupts

In Fig.3.16, the basic auto acknowledgement is shown. After the packet is transmitted by the PTX and received by the PRX the ACK packet is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas theTX_DS IRQ is asserted when the packet is acknowledged and the ACK packet is received by the PTX.

1 Radio Turn Around delay


Fig.3.16TX/RX cycles with ACK and the according interrupts

3.12.2 Single transaction with a lost packet

Figure 3.17 is a scenario where a retransmission is needed due to loss of the first packet transmits. After the packet is transmitted, the

PTX enters RX mode to receive the ACK packet. After the first transmission, the PTX waits a specified time (including setup time, RX_TM and ARD) for the ACK packet, if it is not in the specific time slot the PTX retransmits the packet as shown inFigure 3.17. PTX will turn to RX mode after 210us setup time when packet is transmitted, after 130us RX timeout (RX_TM is RX timeout for PTX, it can be set shorter), then PTX turn to ARD (can be set to 0us, 256us, 512us to 3840us).

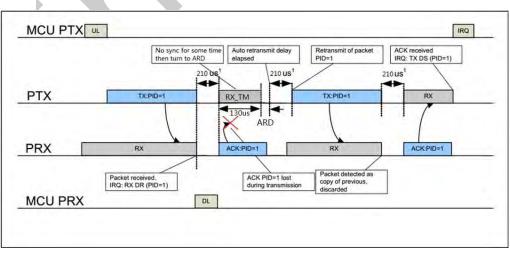

1 Radio Turn Around delay

Figure 3.17TX/RX cycles with ACK and the according interrupts when the first packet transmit fails

When an address is detected the PTX stays in RX mode until the packet is received. When the retransmitted packet is received by the PRX (see Figure 3.17). The RX_DR IRQ is asserted and an ACK is transmitted back to the PTX. When the ACK is received by the PTX, the TX_DS IRQ is asserted.

3.12.3 Single transaction with a lost ACK packet

Figure 3.18 is a scenario where a retransmission is needed after a loss of the ACK packet. The corresponding interrupts are also indicated.

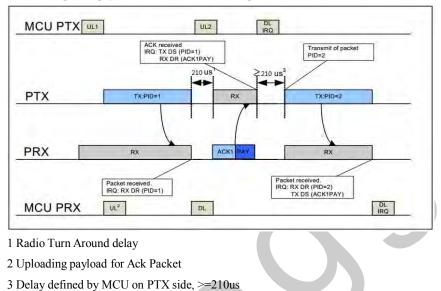
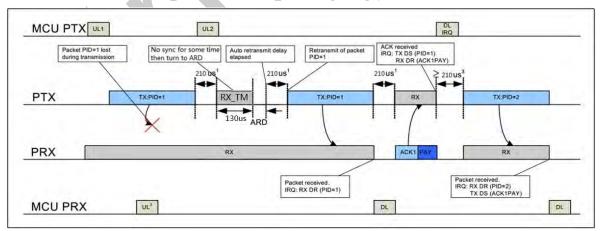

1 Radio Turn Around delay

Fig.3.18TX/RX cycles with ACK and the according interrupts when the ACK packet fails

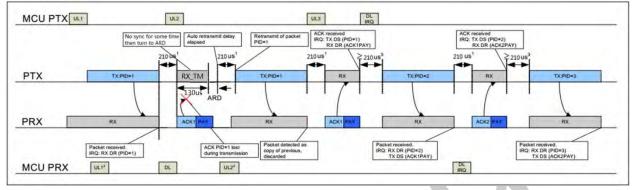
3.12.4 Single transaction with ACK payload packet


Figure 3.19 is a scenario of the basic auto acknowledgement with payload. After the packet is transmitted by the PTX and received by the PRX the ACK packet with payload is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas on the PTX side the TX_DS IRQ is asserted when the ACK packet is received by the PTX. On the PRX side, the TX_DS IRQ for the ACK packet payload is asserted after a new packet from PTX is received.

3.12.5 Single transaction with ACK payload packet and lost packet

Figure 3.20 is a scenario where the first packet is lost and a retransmission is needed before the RX_DR IRQ on the PRX side is asserted. For the PTX both the TX_DS and RX_DR IRQ are asserted after the ACK packet is received. After the second packet (PID=2) is received on the PRX side both the RX_DR (PID=2) and TX_DS (ACK packet payload) IRQ are asserted.

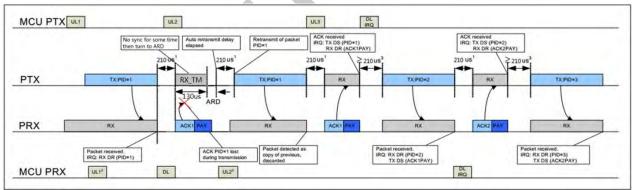
Fig.3.19TX/RX cycles with ACK Payload and the according interrupts



- 1 Radio Turn Around delay
- 2 Uploading payload for Ack Packet
- 3 Delay defined by MCU on PTX side, >=210us
 - Fig.3.20TX/RX cycles and the according interruptwhen the packet transmission fails

3.12.6 Two transactions with ACK payload packet and the first ACK packet lost

In Fig 3.21 the ACK packet is lost and a retransmission is needed before the TX_DS IRQ is asserted, but the RX_DR IRQ is asserted immediately. The retransmission of the packet (PID=1) results in a discarded packet. For the PTX both the TX_DS and RX_DR IRQ are asserted after the second transmission of ACK, which is received. After the second packet (PID=2) is received on the PRX both the RX_DR (PID=2) and TX_DS (ACK1PAY) IRQ is asserted. The callouts explains the different events and interrupts.


1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Fig.3.21TX/RX cycles with ACK Payload and the according interrupts when the ACK packet fails

3.12.7 Two transactions where max retransmissions is reached

1 Radio Turn Around delay

2 Uploading payload for Ack Packet

3 Delay defined by MCU on PTX side, >=210us

Fig 3.22TX/RX cycles with ACK Payload and the according interrupts when the transmission fails. ARCis set to 2.

MAX_RT IRQ is asserted if theauto-retransmit counter (ARC_CNT) exceeds the programmed maximum limit (ARC). In Fig 3.22, the packet transmission ends with a MAX_RT IRQ. The payload in TX FIFO is NOT removed and the MCU decides the next step in the protocol. A toggle of the rfce bit in the RFCON register starts a new transmitting sequence of the same packet. The payload can be removed from the TX FIFO using the FLUSH_TX command.

.

3.13 Data and control interface

The data and control interface gives you access to all the features in the RF transceiver. Compared to the standalone component SFR registers are used instead of port pins. Otherwise the interface is identical to the standalone KT8P01 chip.

3.13.1 SFR registers

Address	Name/mnemonic	Bit	Reset	Туре	Description
(Hex)			Value		
0xE5	SPIRCON	3:0	0x0F	R/W	SPI MASTER configuration register1
	maskIrqRxFifoFull	3	1	R/W	1: Disable interrupt when RX FIFO is full.
					0: Enable interrupt when RX FIFO is full.
	maskIrqRxDa	2	1	R/W	1: Disable interrupt when data is available in RX FIFO.
	taReady				0: Enable interrupt when data is available in RX FIFO.
	maskIrqTxFifoEmpty	1	1	R/W	1: Disable interrupt when TX FIFO is empty.
					0: Enable interrupt when TX FIFO is empty.
	maskIrqTxFifo	0	1	R/W	1: Disable interrupt when a location is available in TX FIFO.
	Ready				0: Enable interrupt when a location is available in TX FIFO.
0xE6	SPIRSTAT	3:0	0x03	R	SPI Mater status register
	Rxfifo_full	3	0	R	1: RX FIFO full.
					0: RX FIFO can accept more data from SPI.
	Rxdata_ready	2	0	R	1: Data available in RX FIFO.
					0: No data in RX FIFO.
	Txfifo_empty	1	1	R	1: TX FIFO empty.
					0: Data in TX FIFO.
	Txfifo_ready	0	1	R	1: Location available in TX FIFO.
				*	0: TX FIFO full.
0xE7	SPIRDAT	7:0	0x00	R/W	SPI Master data register.
					Accesses TX (write) and RX (read) FIFO buffers, both two bytes
					deep.
0xE8	RFCON	1:0	0x2	R/W	
	Rfcsn	1	1	R/W	Enable RF command. 0: enabled
	rfce	0	0	R/W	Enable RF transceiver. 1: enabled

The RF transceiver SPI Master is configured through SPIRCON1. After transferred one byte can generate interrupt (MSDONE), unless they are masked by their respective bits in SPIRCON1. SPIRSTAT reveals which sources these are active. SPIRDAT accesses both the TX (write) and the RX (read) FIFOs, which are two bytes deep. The FIFOs are dynamic and can be

refilled according to the state of the status flags: "FIFO ready" means that the FIFO can accept data. Data readymeans that the FIFOcan provide data, minimum one byte. **RFCON** controls the RF transceiver SPI Slave chip select signal (rfcsn), the RF transceiver chip enable signal (rfce).

3.13.2 SPI Operation

This section describes the SPI commands and timing.

3.13.2.1 SPI commands

The SPI commands are shown in Table 3.5. Every new command must be started by writing 0 to rfcsn in the RFCON register. The SPI command is transferred to RF transceiver by writing the command to the SPIRDAT register. After the first transfer the RF transceiver's STATUS register can be read from SPIRDAT when the transfer is completed.

The serial shifting SPI commands is in the following format:

<Command word:MSBit to LSBit (one byte)>

<Data bytes:MSBit in each byte first>

Command	Command	#Data bytes	Operation
	word (binary)		
R_RESISTER	000A AAAA	1 to 5 LSByte first	Read command and status registers. AAAAA=5 bit register map
			address
W_RESISTER	001AAAAA	1 to 5 LSByte first	Read command and status registers. AAAAA=5 bit register map
			address
			Executable in power down or standby modes only.
R_TX_PAYLOAD	0110 0001	1 to 32 LSByte first	Read RX-payload: 1-32 bytes. A read operation always starts at byte
			0. Payload is deleted from FIFO after it is read. Used in RX mode.
W_TX_PAYLOAD	1010 0000	1 to 32 LSByte first	Write TX-payload: 1 - 32 bytes. A write operation always starts at
			byte 0 used in TX payload.
FLUSH_TX	1110 0001	0	Flush TX FIFO, used in TX mode
FLUSH_RX	1110 0010	0	Flush TX FIFO, used in TX mode
			Should not be executed during transmission of acknowledge, that is,
			acknowledge package will not be completed
REUSE_TX_PL	1110 0011	0	Used for a PTX operation
			Reuse last transmitted payload.TX payload reuse is active until
			W_TX_PAYLOAD or FLUSH TX is executed. TX payload reuse
			must not be activated or deactivated duringpackage transmission.
R_RX_PL_WID	0110 0000	1	Read RX payload width for the top R_RX_PAYLOAD in the RX
			FIFO.Note: Flush RX FIFO if the read value is larger than 32
			bytes.
W_ACK_PAYLOAD	1010 1PPP	1 to 32 LSByte first	Used in RX mode.
			Write Payload to be transmitted together with ACK packet on PIPE
			PPP. (PPP valid in the range from 000 to 101). Maximum three ACK
			packet payloads can be pending. Payloads with same PPP are
			handled using first in - first out principle. Write payload: 1- 32
			bytes. A write operation always starts at byte 0.
W_TX_PAYLOAD_	1011 0000	1 to 32 LSByte first	Used in TX mode. Disables AUTOACK on this specific packet

NO_ACK			specific packet.
NOP	1111 1111	0	No Operation. Might be used to read the STATUS
			register

Tab.3.5Command set for the RF transceiver SPI

The W_REGISTER and R_REGISTER commands operate on single or multi-byte registers. When accessing multi-byte registers readorwrites to the MSBit of LSByte first. You can terminate the writing before all bytes in a multi-byte register are written, leaving the unwritten MSByte(s) unchanged. For example, the LSByteof RX_ADDR_P0 can be modified by writing only one byte to the RX_ADDR_P0 register. The content of the status register is always read to MISO after a high to low transition on CSN.

Note: The 3 bit pipe information in the STATUS register is updated during the RFIRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an RFIRQ high to low transition.

3.13.3 Data FIFO

The data FIFOs store transmitted payloads (TX FIFO) or received payloads that are ready to be clocked out (RX FIFO). The FIFOs are accessible in both PTX mode and PRX mode. The following FIFOs are present in the RF transceiver:

- TX three level, 32 byte FIFO
- RX three level, 32 byte FIFO

Both FIFOs have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payloads for ACK packets to three different PTX devices. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in - first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO using the FLUSH_TXcommand.

The RX FIFO in PRX can contain payloads from up to three different PTX devices and a TX FIFO in PTX can have up to three payloads stored.

You can write to the TX FIFO using these three commands; W_TX_PAYLOAD and W_TX_PAYLOAD_NO_ACK in PTX mode and W_ACK_PAYLOAD in PRX mode. All three commands provide access to the TX_PLD register.

The RX FIFO can be read by the command R_RX_PAYLOAD in PTX and PRX mode. This command provides access to the RX_PLD register.

The payload in TX FIFO in a PTX is not removed if the MAX_RT IRQ is asserted.

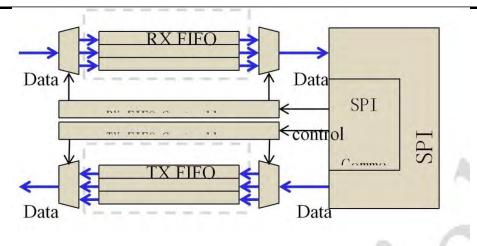


Figure 3.23 FIFO (RX and TX) block diagram

You can read if the TX and RX FIFO are full or empty in the FIFO_STATUS register.

3.13.4 Interrupt

The RF transceiver can send interrupts to the MCU. The interrupt (RFIRQ) is activated when TX_DS, RX_DR or MAX_RT are set high by the state machine in the STATUS register. RFIRQ is deactivated when the MCU writes 'l' to the interrupt source bit in the STATUS register. The interrupt mask in the CONFIG register is used to select the IRQ sources that are allowed to activate RFIRQ. By setting one of the mask bits high, the corresponding interrupt source is disabled. By default all interrupt sources are enabled.

Note: The 3 bit pipe information in the STATUS register is updated during the RFIRQ high to low transition. The pipe information is unreliable if the STATUS register is read during a RFIRQ high to low transition.

3.14 Register map

You can configure and control the radio by accessing the register map through the SPI.

3.14.1 Register map table

All undefined bits in the table below are redundant. They are read out as '0'.

Note: Addresses 18 to 1B are reserved for test purpose, alteringthem makes the chip malfunction.

Register Definition

3.14.2 BANK0

3.14.2.1 CONFIG (RW)Address: 00h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	MASK_RX_ DR	MASK_TX_ DS	MASK_MA X_RT	EN_CRC	CRCO	PWR_UP	PRIM_RX
0	0	0	0	1	0	0	0
RW	RW	RW	W	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description				
7	0		Only 0 allowed				
		Reserved	0	Keep the current value			
			1	Reset to default values			
6	0	MASK_RX_DR	Mask interrupt cause	ed by RX_DR			
			0	Reflect RX_DR as active low interrupt on the IRQ pin			
			1	Interruptnot reflected on the IRQ pin			
5	0	MASK_TX_DS	Mask interrupt cause	ed by TX_DS			
			0	Reflect TX_DS as active low interrupt on the IRQ pin			
			1	Interrupt not reflected on the IRQpin			
4	0	MASK_MAX_	Mask interrupt caused by MAX_RT				
		RT	0	Reflect MAX_RT as active low interrupt on the IRQ pin			
			1	Interrupt not reflected on the IRQ pin			
3	1	EN_CRC	Enable CRC. Forced	high if one of the bits in the EN_AA is high			
			0	Disable CRC			
			1	Enable CRC			
2	0	CRCO	CRC encoding scher	me			
			0	1 byte			
			1	2 byte			
1	0	PWR_UP	Power up control				
			0	POWER DOWN			
			1	POWER UP			
0	0	PRIM_RX	RX/TX control				
			0	PTX			
			1	PRX			

3.14.2.2 EN_AA (RW) Address: 01h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reversed		ENAA_P5	ENAA_P4	ENAA_P3	ENAA_P2	ENAA_P1	ENAA_P0
0		1	1	1	1	1	1
RW		RW	W	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description			
7	0	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
6	0	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5	1	ENAA_P5	Enable auto acknow	wledgement data pipe 5		
			0	Disable		
			1	Enable		
4	1	ENAA_P4	Enable auto acknow	wledgement data pipe 4		
			0	Disable		
			1	Enable		
3	1	ENAA_P3	Enable auto acknow	wledgement data pipe 3		
			0	Disable		
			1	Enable		
2	1	ENAA_P2	Enable auto acknow	wledgement data pipe 2		
			0	Disable		
			1	Enable		
1	1	ENAA_P1	Enable auto acknow	wledgement data pipe 1		
			0	Disable		
			1	Enable		
0	1	ENAA_P0	Enable auto acknow	wledgement data pipe 0		
			0	Disable		
			1	Enable		

3.14.2.3 EN_RXADDR (RW)Address: 02h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reversed		ERX_P5	ERX_P4	ERX_P3	ERX_P2	ERX_P1	ERX_P0
0		0	0	0	0	1	1
RW		RW	W	RW	RW	RW	RW

Bit	Value	Symbol	Description				
7:6	0	Reserved	Only 0 allowed				
			0	Keep the current value			
			1	Reset to default values			
5	0	ERX_P5	Enable data pipe 5				
			0	Disable			
			1	Enable			
4	0	ERX_P4	Enable data pipe 4				
			0	Disable			
			1	Enable			
3	0	ERX_P3	Enable data pipe 3				
			0	Disable			
			1	Enable			
2	0	ERX_P2	Enable data pipe 2				
			0	Disable			
			1	Enable			
1	1	ERX_P1	Enable data pipe 1				
			0	Disable			
			1	Enable			
0	1	ERX_P0	Enable data pipe 0				
			0	Disable			
			1	Enable			

3.14.2.4 SETUP_AW (RW) Address: 03h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Reserved								
		2'b11							
		R	W						

Description of Word

Bit	Value	Symbol	Description		
7:2	0	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
1:0	2'b11	SETUP_AW	Setup of Address W	idths	
			(common for all dat	a pipes)	
			2'b11	5 bytes	
			2'b10	4 bytes	

2'b01	Illegal
2'b00	Illegal

3.14.2.5 SETUP_RETR (RW) Address: 04h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	AI	RD		ARC					
	4'	b0		4'b11					
	R	W			R	W			

Description of Word

Bit	Value	Symbol		Description
7:4	4'b0	ARD	Auto Retransmit De	lay
			4'hf	Wait 3750µS
			4'h1	Wait 250µS
			4'h0	Wait 0µS
3:0	4'b11	ARC	Auto Retransmit Co	vunt
			4'hf	Up to 15 Re-Transmit on fail of AA
			4'h1	Up to 1 Re-Transmit on fail of AA
			4'h0	Re-Transmit disabled

3.14.2.6 RF_CH (RW) Address: 05h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Reg_Rf_ch									
	8'b2									
	RW									

Description of Word

Bit	Value	Symbol	Description
8:0	2	Reg_Rf_ch	Sets the frequency channel KT6R00 operates on

3.14.2.7 RF_SETUP (RW) Address: 06h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONT_WAV	PA_PWR[3]	RF_DR_LO	Reserved	RF_DR_HIG	Pa_power		

Е		W		Н	
0	1	0	0	1	3'b010
RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description						
7	0	CONT_WAVE	Enables continuous of	Enables continuous carrier transmit when high					
			0	Disable					
			1	Enable					
6	1	PA_PWR[3]	PA power select bit 3	;					
5	0	RF_DR_LOW	See RF_DR_HIGH f	for encoding.					
4	0	reserved	Reserved						
3	1	RF_DR_HIGH	Select between the h	igh speed data rates. This bit is don	ot care if RF_DR_LOW is				
			set.Encoding:						
			[RF_DR_LOW, RF_	DR_HIGH]:					
			11	500Kbps					
			10	reserved					
			01	2Mbps					
			00	1Mbps					
2:0	3'b010	PA_PWR[2:0]	PA power control, PA	A_PWR[3:0] with pa_voltage of RF	_IVGEN in bank1				
			PA_PWR[3:0]	Pa_voltage(bank1 of					
				RF_IVGEN)					
			1111	0	Output 8 dbm				
			1000	0	Output 5 dbm				
			0111	1	Output 4 dbm				
			0011	0	Output 0 dbm				
			0001	0	Output -6 dbm				
			0001	1	Output -12 dbm				
			0000	0	Output -16 dbm				
			0000	1	Output -43 dbm				

3.14.2.8 STATUS (RW) Address: 07h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BANK	RX_DR	TX_DS	MAX_RT	RX_P_NO			TX_FULL
0	0	0	0	3'b111			0
R	RW	RW	RW	R			R

Description of Word

Bit Value Symbol Description

7	0	BANK	Register BANK state	15				
			1	Register R/W is to register BANK1				
			0	Register R/W is to register BANK0				
6	0	RX_DR	Data Ready RX FIFO interrupt. Asserted when new data arrives RX FIFO					
			Write 1 to clear bit.					
5	0	TX_DS	Data Sent TX FIFO interrupt. Asserted when packet transmitted on TX. If AUTO_ACK					
			isactivated, this bit is	isactivated, this bit is set high only when ACK is received.				
			Write 1 to clear bit.					
4	0	MAX_RT	Maximum number of TX retransmits interrupt, Write 1 to clear bit. If MAX_RT is asserted					
			it must be cleared to	enable further communication.				
3:1	3'b111	RX_P_NO	Data pipe number for	r the payload available for reading from RX_FIFO				
			111	RX FIFO Empty				
			110	Not Used				
			000-101	Data Pipe Number				
0	0	TX_FULL	TX FIFO full flag					
			0	Available locations in TX FIFO				
			1	TX FIFO full				

3.14.2.9 OBSERVE_TX (RW) Address: 08h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PLOS_CNT				ARC_CNT					
	4'h0				4'h0				
	ŀ	ł			ŀ	ł			

Description of Word

Bit	Value	Symbol	Description
7:4	4'h0	PLOS_CNT	Count lost packets. The counter is overflow protected to 15, and discontinues at max until
			reset. The counter is reset by writing to RF_CH.
3:0	4'h0	ARC_CNT	Count retransmitted packets. The counter is reset when transmission of a new packet starts.

3.14.2.10 RPD (R) Address: 09h

Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
			sig_dt	om_est					
8'h0									
R									

Description of Word

Bit	Value	Symbol		Description
7:0	0	sig_dbm_est	estimated in-band sig	gnal level in dBm, should support $-100 \sim +10$ dBm,
			11000000	-64 dBm

3.14.2.11 RX_ADDR_P0 (RW) Address: 0Ah

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32
			RX_AI	DDR_P0			
			8']	h70			
			R	W			
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
			RX_AI	DDR_P0			
			8']	h41			
			R	W			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
			RX_AI	DDR_P0			
			8']	h88			
			R	W			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
			RX_AI	DDR_P0			
			8']	h20			
			R	W			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			RX_AI	DDR_P0			
			8']	h46			
			R	W			

Description of Word

Bit	Value	Symbol	Description
39:0	40'7041	RX_ADDR_P0	Receive address data pipe 0. 5 Bytes maximum length. (LSByte is written first. Write the
	882046		number of bytes defined by SETUP_AW)

3.14.2.12 RX_ADDR_P1 (RW) Address: 0Bh

Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
			RX_AD	DR_P1					
8'hC2									
	RW								

Description of Word

3.14.2.13 RX_ADDR_P2 (RW) Address: 0Ch

Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
			RX_AD	DDR_P2					
			8'h	iC3					
			R	W					

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc3	RX_ADDR_P2	Receive address data pipe 2. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

3.14.2.14 RX_ADDR_P3 (RW) Address: 0Dh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			RX_AD	DDR_P3			
			8'h	nC4			
			R	W			

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc4	RX_ADDR_P3	Receive address data pipe 3. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

3.14.2.15 RX_ADDR_P4 (RW) Address: 0Eh

RX_ADDR_P4 8'hC5 RW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				RX_AD	DDR_P4			
PW				8'h	iC5			
i kw								

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc5	RX_ADDR_P4	Receive address data pipe 4. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

RX_ADDR_P5 (RW) Address: 0Fh 3.14.2.16

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RX_ADDR_P5									
8'hC6									
RW									

Description of Word

Bit	Value	Symbol	Description
7:0	8'hc6	RX_ADDR_P5	Receive address data pipe 5. Only LSB. MSBytesare equal to RX_ADDR_P0[39:8]

3.14.2.17 TX_ADDR(RW) Address: 10h

			1						
Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32		
TX_ADDR									
8'h70									
RW									
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24		
	TX_ADDR								
	8'h41								
	RW								
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
			TX_A	ADDR					
			8']	h88					
			R	W					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
			TX_A	ADDR					
			8']	h20					
			R	W					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			TX_A	ADDR					
			8']	h46					
			R	W					

Description of Word

Bit	Value	Symbol	Description
39:0	40'h704	TX_ADDR	Transmit address. Used for a PTX device only. (LSByte is written first)Set RX_ADDR_P0
	1882046		equal to this address to handle automatic acknowledge if this is a PTX device with Protocol
			engine enabled.

3.14.2.18 RX_PW_P0 (RW) Address: 11h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Res	erved	RX_PW_P0							
	0)				
R	XW	RW							

Description of Word

Bit	Value	Symbol	Description		
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
5:0	0	RX_PW_P0	Number of bytes in RX payload in data pipe 0 (1 to 32 bytes)		
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

3.14.2.19 RX_PW_P1 (RW) Address: 12h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved				RX_P	W_P1		
0				()		
RW				R	W		

Description of Word

Bit	Value	Symbol		Description	
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
5:0	0	RX_PW_P1	Number of bytes in RX payload in data pipe 1 (1 to 32 bytes)		
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

3.14.2.20 RX_PW_P2 (RW) Address: 13h

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Reserved	RX_PW_P2
0	0
RW	RW

Description of Word

Bit	Value	Symbol	Description			
7:6	2'b00	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5:0	0	RX_PW_P2	Number of bytes in RX payload in data pipe 2 (1 to 32 bytes)			
			32	32 bytes		
			1	1 byte		
			0	Pipe not used		

3.14.2.21 RX_PW_P3 (RW) Address: 14h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Rese	erved	RX_PW_P3						
(0			(
R	W			R	W			

Description of Word

.

Bit	Value	Symbol		Description			
7:6	2'b00	Reserved	Only 0 allowed				
			0 Keep the current value				
			1	Reset to default values			
5:0	0	RX_PW_P3	Number of bytes in	RX payload in data pipe 3 (1 to 32 bytes)			
			32	32 bytes			
			1	1 byte			
			0	Pipe not used			

3.14.2.22 RX_PW_P4 (RW) Address: 15h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Rese	erved		RX_PW_P4							
	0		0							
RW				R	W					

Bit	Value	Symbol	Description		
7:6	2'b00	Reserved	Only 0 allowed		
			0	Keep the current value	
			1 Reset to default values		
5:0	0	RX_PW_P4	Number of bytes in RX payload in data pipe 4 (1 to 32 bytes)		
			32	32 bytes	
			1	1 byte	
			0	Pipe not used	

3.14.2.23 RX_PW_P5 (RW) Address: 16h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Rese	erved	RX_PW_P4						
()			()			
R	W			R	W			

Descrip	otion of Word			
Bit	Value	Symbol		Description
7:6	2'b00	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
5:0	0	RX_PW_P5	Number of bytes in I	RX payload in data pipe 5 (1 to 32 bytes)
			32	32 bytes
			1	1 byte
			0	Pipe not used

3.14.2.24

FIFO_STATUS (RW) Address: 17h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	TX_REUSE_ PL	TX_FULL	TX_EMPTY	Reserved		RX_FULL	RX_EMPTY
0	0	0	1	0		0	1
RW	R	R	R	RW		R	R

Description of Word

Bit	Value	Symbol		Description
7	0	Reserved	Only '0' allowed	
			0	Keep the current value
			1	Reset to default values
6	0	TX_REUSE_PL	TX REUSE flag.	
			1	Tx data reused
			0	Tx data not reused
5	0	TX_FULL	TX FIFO full flag.	
			1	TX FIFO full
			0	Available locations in TX FIFO
4	1	TX_EMPTY	TX FIFO empty fla	g.
			1	TX FIFO empty
			0	Data in TX FIFO
3:2	2'b00	Reserved	Only '00' allowed	
			0	Keep the current value
			1	Reset to default values
1	0	RX_FULL	RX FIFO full flag.	
			1	RX FIFO full
			0	Available locations in RX FIFO
0	1	RX_EMPTY	RX FIFO empty fla	g.
			1	RX FIFO empty
			0	Data in RX FIFO

3.14.2.25 DYNPD (RW) Address: 1Ch

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved		DPL_P5	DPL_P4	DPL_P3	DPL_P2	DPL_P1	DPL_P0
0		0	0	0	0	0	0
R	W	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description			
7:6	2'b00	Reserved	Only 0 allowed	Only 0 allowed			
		٢	0	0 Keep the current value			
			1 Reset to default values				
5	0	DPL_P5	Enable dynamic pay	load length data pipe 5. (Requires EN_DPL and ENAA_P5)			
4	0	DPL_P4	Enable dynamic pay	vload length data pipe 4. (Requires EN_DPL and ENAA_P4)			
3	0	DPL_P3	Enable dynamic pay	vload length data pipe 3. (Requires EN_DPL and ENAA_P3)			
2	0	DPL_P2	Enable dynamic pay	vload length data pipe 2. (Requires EN_DPL and ENAA_P2)			
1	0	DPL_P1	Enable dynamic pay	Enable dynamic payload length data pipe 1. (Requires EN_DPL and ENAA_P1)			
0	0	DPL_P0	Enable dynamic pay	vload length data pipe 0. (Requires EN_DPL and ENAA_P0)			

3.14.2.26 FEATURE (RW) Address: 1Dh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Reserved		bp_pd_pll48	bp_pd_rc16m	EN_DPL	EN_ACK_PA Y	EN_DYN_A CK
0			0	0	0	0	0
		RW			RW	RW	RW

Description of Word

Bit	Value	Symbol	Description			
7:5	3'b00	Reserved	leserved			
4	0	bp_pd_pll48	1 indicates bypass power down pll48 clock			
3	0	bp_pd_rc16m	1 indicates bypass power down rc16m clock			
2	0	EN_DPL	Enables Dynamic Payload Length			
1	0	EN_ACK_PAY	Enables Payload with ACK			
0	0	EN_DYN_ACK	Enables the W_TX_PAYLOAD_NOACK command			

3.14.2.27

.

SETUP_VALUE (RW)

Address: 1Eh

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit32			
			REG_LN	A_WAIT						
	8'h00									
RW										
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24			
	REG_MBG_WAIT									
	8'h10									
			R	W						
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16			
			RX_TN	A_CNT						
			8'l	180						
			R	W						
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
			TX_SETU	P_VALUE						
			8'l	132						
			R	W						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
			RX_SETU	P_VALUE						
			8'l	128						
			R	W						

Description of Word

Bit	Value	Symbol	Description		
39:32	0	REG_LNA_WA	Lna wait counter		
		IT	8'hff	255 cycle	
			1	1 cycle	
			0	0 cycle	
31:24	10	REG_MBG_W	Main bandgap wait	counter	
		AIT	8'hff	255us	
			1	1 us	
			0	0 us	
23:16	80	RX_TM_CNT	Rx timeout counter.		
			8'hff	255us	
			1	1 us	
			0	0 us	
15:8	8'h32	TX_SETUP_VA	TX_SETUP time, th	e time between Standby to TX mode	
		LUE			
			8'hff	255us	
			1	1 us	
			0	0 us	
7:0	8'h28	RX_SETUP_VA	RX_SETUP time, th	e time between Standby to RX mode	
		LUE	8'hff	255us	
			1	1 us	
			0	0 us	

3.14.2.28 PRE_GURD (RW) Address: 1Fh

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	SPARE_REG[23:16]								
	0								
RW									
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
SPARE_REG[15:8]									
0									

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	TAIL_CTL		GRD_EN	GRD_CNT			
	3'h3			4'h7			
	RW		RW	RW			

Description of Word

Bit	Value	Symbol	Description		
23:8	0	SPARE_REG	Output to analogue	Output to analogue	
7:5	3'h3	TAIL_CTL	Number of repeat b	it after the CRC	
			7	7 repeat tail	
			1	1 repeat tail	
			0	0 No repeat tail	
4	1	GRD_EN	Pre-Guard enable		
3:0	4'h7	GRD_CNT	Number of Pre-Gua	ard bit before preamble	
			4'hf	16 bit pre_guard	
			1	2 bit pre_guard	
			0	1 bit pre_guard	

3.14.3 Bank1

.

3.14.3.1 PLL_CTL0 (RW) Address: 01h

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
SDM EN	Dil daa on	PLL_RSTN_	CRY_PD_RE	CRY_PD_M	CAL EN	PLL_FOFFSET_SEL	
SDM_EN	Pll_dac_en	PFD	G	Ν	CAL_EN		
1	1	1	0	0	0	()
RW	RW	RW	RW	RW	RW	R	W
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
DAC_CAL-E	DAC_CAL_	DAC_CALM	BP RC BP	DOC_CAL_	DOC_CAL_	DOC_DAC_	I Q RVS
N_REG	EN_MN	ODE_REG	Dr_KC_Dr	EN_REG	EN_MN_	MN	I_Q_KV5
0	0	1	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
PLL_TEST_	Dage	ward	PD_PLL_RE	PD_PLL_M	PLL_TX_EN	PLL_TX_EN	AFC_COR_
EN	Reserved		G	Ν	_REG	_MN	MN
0	0		0	0	0	0	0
RW	R	W	RW	RW	RW	RW	RW

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SDM_DITH_	SDM_DITH_	DAC_RANG	DAC_IN_M	AFC_EN_RE	AFC_EN_M	CTUNING_	FTUNING_
IN	EN	E_MN	Ν	G	Ν	MN	MN
0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description		
31	1	SDM_EN	SDM enable			
			1	Enable the SDM		
			0	Disable the SDM		
30	1		Output DAC_EN to	analog		
		Pll_dac_en	0	Output 0		
			1	Output 1		
29	1	PLL RSTN PF	PLL_RSTN_PFD co	ontrol		
		D	1	Set 1		
		D	0	Set 0		
28	0		Control the Power de	own of Crystal		
		CRY_PD_REG	1	Power down the crystal		
			0	Power up the crystal		
27	0		Select the source of	crystal power down		
		CRY_PD_MN	1	CRY_PD = CRY_PD_REG		
			0	CRY_PD = CRY_PD_FSM		
26	0		Calibration enable si	libration enable signal		
		CAL_EN	1	Enable the calibration when CE high 10us trigger the calibration		
			0	Disable the calibration		
25:24	0	PLL_FOFFSET	PLL_FOFFSET_SE	L control		
		_SEL	, i i i i i i i i i i i i i i i i i i i			
23	0	DAC_CAL_EN	DAC calibration ena	ble		
		REG	1	Enable the DAC calibration		
		_KEG	0	Disable the DAC calibration		
22	0	DAC_CAL_EN	Select the source of	DAC_CAL_EN		
		MN	1	DAC_CAL_EN = DAC_CAL_REG		
			0	DAC_CAL_EN = DAC_CAL_FSM		
21	1	DAC_CALMO	Control the VCO gai	in		
		DRC_CREMO DE_REG	1	Normal gain		
		DE_REG	0	5 times of the normal gain		
20	0		Bypass RC_BP phas	e in the FSM		
		BP_RC_BP	1	Bypass RC_BP phase		
			0	No bypass RC_BP phase		
19	0	DOC_CAL_EN	Enable the DOC cali	bration		

.

<u>KT8P01</u>

		_REG	1	Enable the DOC calibration
			0	Disable the DOC calibration
18	0	DOC CAL EN	Select the source of	DOC_CAL_EN source
		DOC_CAL_EN	1	DOC_CAL_EN = DOC_CAL_EN_REG
		_MN	0	DOC_CAL_EN = DOC_CAL_EN_FSM
17	0		Select the source of	DOC source
		DOC DAC M	1	DOC_DACI = DOC_DACI_REG
		DOC_DAC_M N		DOC_DACQ=DOC_DACQ_REG
		11	0	DOC_DACI = DOC_DACI_FSM
				DOC_DACQ = DOC_DACQ_FSM
16	0		Only 0 allowed	
		I_q_rvs	0	Keep the current value
			1	Reset to default values
15	0		Enable the PLL in te	est mode
		PLL_TEST_EN	1	PLL A_CNT and B_CNT come from register
			0	PLL A_CNT and B_CNT come from SDM
14:13	0	Reserved		
12	0		PLL power down co	ntrol
		PD_PLL_REG	1	Power down PLL
			0	Power up PLL
11	0		Select the source of	PLL Power down
		PD_PLL_MN	1	PD_PLL = PD_PLL_REG
			0	PD_PLL = PD_PLL_FSM
10	0		PLL TX mode	
		PLL_TX_EN_R	1	PLL in TX mode
		EG	0	PLL in RX mode
9	0		Select the source of	PLL_TX_EN
		PLL_TX_EN_	1	PLL_TX_EN = PLL_TX_EN_REG
		MN	0	PLL_TX_EN = PLL_TX_EN_FSM
8	0		Select the source of	AFC_COR
		AFC_COR_MN	1	AFC_COR = AFC_COR_REG
			0	AFC_COR = AFC_COR_FSM
7	0		SDM dither in value	
		SDM_DITH_IN	1	Value 1
			0	Value 0
6	0		SDM dither enable	•
		SDM_DITH_E	1	Enable the SDM dither
		Ν	0	Disable the SDM dither
5	0	DAC_RANG_	Select the source of	DAC_RANG
		MN	1	DAC_RANG = DAC_RANG_REG
			0	DAC_RANG = DAC_RANG_FSM
4	0	DAC_IN_MN	Select the source of	DAC_IN
L	i			

			1	DAC_IN = DAC_IN_REG
			0	DAC_IN = DAC_IN_FSM
3	0	AFC_EN_REG	AFC enable	
			1	Enable the AFC
			0	Disable the AFC
2	0	AFC_EN_MN	Select the source of A	AFC_EN
			1	AFC_EN = AFC_EN_REG
			0	AFC_EN = AFC_EN_FSM
1	0	CTUNING_MN	Select the source of G	CTUNING
			1	CTUNING = CTUNING_REG
			0	CTUNING = CTUNING_FSM
0	0	FTUNING_MN	Select the source of FTUNING	
			1	FTUNING = FTUNING_REG
			0	FTUNING = FTUNING_FSM

3.14.3.2 PLL_CTL1 (RW) Address: 02h

Bit 27 Bit 26 Bit 25 Bit 24								
DC_BW DC_RM_EN BP_GAU								
0 0 0								
RW RW RW								
Bit 19 Bit 18 Bit 17 Bit 16								
REG_TX_PA_WAIT								
8'h10								
RW								
Bit 11 Bit 10 Bit 9 Bit 8								
_PLL_WAIT								
8'h5a								
RW								
Bit 3 Bit 2 Bit 1 Bit 0								
G_AFC_WAIT								
8'h0								
RW								

Description of Word

•

Bit	Value	Symbol	Description		
31	0		software reset (please note when write to the bit, the bank is switch to bank0)		
		Soft_rst	0 Keep the current value		
			1 write 1 reset the 6200		
30	0	SYNC_DET_DI	Disable AGC when sync detected		

		S	1	Disable
			0	Enable
29	0		TX data and strobe c	ome from FPGA
		PHY_FPGA	1	TX data and strobe come from FPGA
			0	TX data and strobe com
28	0		Bypass half band filt	er
		BP_HF	1	Bypass
			0	Not bypass
27:26	0	DC_BW	DC remove factor	
			3	2^-7
			2	2^-6
			1	2^-5
			0	2^-4
25	0	DC_RM_EN	RX DC remove enab	le
			1	Enable DC remove
			0	Disable DC remove
24	0	BP_GAU	Bypass Gauss filter	
			1	Bypass Gauss filter
			0	Not Bypass Gauss filter
23:16	8'h10	REG_TX_PA_	The time between po	wer up PA to transmit data
		WAIT	8'hff	255 cycle
			···	
			1	1 cycle
			0	0 cycle
15:8	8'h5a	Tx_PLL_WAIT	Pll lock wait time	in Tx mode
			8'hff	255 us
			1	1 us
			0	0 us
7:0	8'h0	REG_AFC_WA	The time between R	C done and AFC start
		IT	8'hff	255 us
			1	1 us
			0	0 us

3.14.3.3 CAL_CTL (RW) Address: 03h

Bit 39	Bit 38	Bit 37	Bit 36	Bit 35	Bit 34	Bit 33	Bit 32				
Tx_wait_cnt											
			8'ł	150							
	RW										

\sim						•	
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
			Rx_pl	ll_wait			
			8'1	n40			
			R	W			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
Bp_ch_chg	afc_v	w_sel	Scramble_en	Bp_dc	Bp_dac	Bp_afc	Bp_rc
0	2't	510	1	0	0	0	0
RW	R	W	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
bp_vco_ldo	Psudo_rnd	Bp_rx_addr	Reg_vc_det_ en	Bp_cp_diox		Vco_ldo_cal_reg	5
0	0	0	0	1		0	
WR	RW	RW	RW	RW			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Vco_ldo_cal_ mn	Rc_cal_ctr_m	Pll_rst_cnt			Rc_cal_ctl_reg	N	
0	0	1			0		
RW	RW	RW			RW		
Description of	Word				2		

Description of Word

·				
Bit	Value	Symbol		Description
39:32	8'h50	Tx_wait_cnt	Wait cycles betwee	en retransmits
31:24	8'h40	Rx_pll_wait	Pll lock wait tin calibration	ne in rx mode Force_cal : before every transmit and receive do
23	0	Bp_ch_chg	When rf_ch not	change do not do calibration when the force_cal is set.
			0 : calibration ev	ven the channel is not change
			1: do not calibra	tion if the channel is no change
22:21	2'b10	afc_w_sel	Select the AFC wa	it reference counter
			0	512
			1	255
			2	127
			3	63
20	1		Scramble enable in	n the transmit bit
		Scramble_en	0	Disable
			1	Enable
19	0	Bp_dc	Bypass DC calibra	tion phase
			0	Disable
			1	Enable
18	0	Bp_dac	Bypass DAC calib	ration phase
			0	Disable

\sim				
			1	Enable
17	0	Bp_afc	Bypass AFC calib	pration phase
			0	Disable
			1	Enable
16	0	Bp_rc	Bypass RC calibr	ation phase
			0	Disable
			1	Enable
15	0	bp_vco_ldo	Bypass VCO_LD	O calibration phase
			0	Disable
			1	Enable
14	0		Transmit Randon	n data
		Psudo_rnd	0	Disable
			1	Enable
13	0	Bp_rx_addr	Bypass the RX_A	ADDR phase in the main FSM
12	0	Reg_vc_det_en	Enable the detect	pll calibration
			0	Disable
			1	Enable
11	1	Bp_cp_diox	Bpassdio	
			0	Disable
			1	Enable
10:8	0	Vco_ldo_cal_re	Vco_ldo mamual	set value
		g		
7	0	Vco_ldo_cal_m	Vcoldo calibratio	n select
		n	0	Vco_ldo_cal = vco_ldo_cal_fsm
			1	Vco_ldo_cal = vco_ldo_cal_reg
6	0	Rc_cal_ctr_mn	Rc calibration sel	ect
			0	Rc_cal_ctr = rc_cal_ctr_fsm
			1	Rc_cal_ctr = rc_cal_ctr_reg
5	1	Pll_rst_cnt	Pll_rst_cnt	
			0	Output 0
			1	Output 1
4:0	0	Rc_cal_ctr_reg	Rc calibration reg	gister

3.14.3.4 A_CNT_REG (RW) Address: 04h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Pd_vreg_buf	Pd_vreg_buf_		A ONT PEG							
_reg	mn		A_CNT_REG							
0	0		0							
RW	RW	RW								

Description of Word

Bit	Value	Symbol	Description				
7	0	Pd_vreg_buf_re	Pd_vreg_buf manual value				
		g					
6	0	Pd_vreg_buf_m	Pd_vreg_buf manual select				
		n					
5:0	6'h0	A_CNT_REG	Control the A_CNT to the PLL				

3.14.3.5 B_CNT_REG (RW) Address: 05h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved			Pd_pkdet_reg	Pd_pkdet_mn	B_CNT_REG		
0			0	0	0		
R			RW	RW		RW	

Description of Word

Bit	Value	Symbol	Description
4	0	Pd_pkdet_reg	Pd_pkdet manual value
3	0	Pd_pkdet_mn	Pd_pkdet manual select
2:0	3'h0	B_CNT_REG	Control the B_CNT to the PLL

3.14.3.6 STATUS (RW) Address: 07h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BANK	RX_DR	TX_DS	MAX_RT	RX_P_NO			TX_FULL
0	0	0	0	3'b111			0
R	RW	RW	RW	RW			R

Description of Word

Bit	Value	Symbol		Description				
7	0	BANK	Register BANK status					
			1 Register R/W is to register BANK1					
			0 Register R/W is to register BANK0					
6	0	RX_DR	Data Ready RX FIF	O interrupt. Asserted when new data arrives RX FIFO				
			Write 1 to clear bit.					
5	0	TX_DS	Data Sent TX FIFC	Data Sent TX FIFO interrupt. Asserted when packet transmitted on TX. If AUTO_ACK				
			isactivated, this bit is set high only when ACK is received.					
			Write 1 to clear bit.					

4	0	MAX_RT	Maximum number o	f TX retransmits interruptWrite 1 to clear bit. If MAX_RT is asserted				
			it must be cleared to	it must be cleared to enable further communication.				
3:1	3'b111	RX_P_NO	Data pipe number fo	r the payload available for reading from RX_FIFO				
			111	RX FIFO Empty				
			110	Not Used				
			000-101	Data Pipe Number				
0	0	TX_FULL	TX FIFO full flag					
			0 Available locations in TX FIFO					
			1	TX FIFO full				

3.14.3.7 STATE (RW) Address: 08h

Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
Re	served		CAL_ST_CS					
0				(0			
RW				I	2			
Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
erved			STATE_CS					
0				0				
RW				R				
	Re Bit 6 rved	Reserved 0 RW Bit 6 Bit 5 rved .	Reserved 0 RW Bit 6 Bit 5 Bit 4	Reserved 0 RW Bit 6 Bit 5 Bit 4 Bit 3 rved STAT 0	Reserved CAL_ 0 0 RW I Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 rved STATE_CS 0 0 0	CAL_ST_CS00RWRWBit 6Bit 5Bit 4Bit 3Bit 2Bit 1rvedSTATE_CS00		

Description of Word

.

Descrip	tion of Word			
Bit	Value	Symbol		Description
15:12	0	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
11:8	4'b0	Cal_st_cs	Describe the state	e of calibration state machine
7:6	0	Reserved	Only 0 allowed	
			0	Keep the current value
			1	Reset to default values
5:0	6'b0	State_cs	Describe the state	e of main state machine

3.14.3.8 CHAN (RW) Address: 09h

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24	
Chan_mn	Reserved	CHAN_FRAC_REG						
0	0	0						
RW	RW		RW					
Bit 23	3 Bit 22 Bit 21 Bit 20 Bit 19 Bit 18 Bit 17 Bit 16							
	CHAN_FRAC_REG							

	0								
	RW								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	CHAN_FRAC_REG								
CHAN_FRAC_REO									
	0								
			RW				RW		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	CHAN_INT_REG								
	0								
	RW								

Description of Word

Bit	Value	Symbol	Description		
31	1'b0	Chan_mn	Channel int and frac part select		
			0	Come from the calculation from rf_ch	
			1	Come from register	
30	2'b0	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
29:9	0	CHAN_FRAC_	PLL frequency frag	gment pat	
		REG			
8:0	0	CHAN_INT_RE	PLL frequency inte	eger pat	
		G			
8:0	0		PLL frequency inte	eger pat	

3.14.3.9 IF_FREQ (RW) Address: 0ah

D1. 00	711.00	Diat		D: 10	D1: 10	2010 4 5	Disto		
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
	Reserved				IF_FREQ_REG				
	0				0				
	R				RW				
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	IF_FREQ_REG								
	P.		(0					
			R	W					
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
	IF_FREQ_REG								
	0								
	RW								

Description of Word

Bit	Value	Symbol	Description			
23:21	2'b0	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
20:0	0	IF_FREQ_REG	RX frequency point			

3.14.3.10 AFC_COR (RW) Address: 0bh

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
	Reserved			AFC_COR					
	0				0				
	R			RW					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	AFC_COR								
	0								
			R	W					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	AFC_COR								
	0								
			R	W					

Description of Word

Bit	Value	Symbol	Description			
23:21	2'b0	Reserved	Only 0 allowed			
			0 Keep the current value			
			1 Reset to default values			
20:0	0	AFC_COR	RX frequency calibration			

3.14.3.11 FDEV (RW) Address: 0ch

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	FDEV						
0	0						
R	RW						

Description of Word

Bit	Value	Symbol	Description			
7	0	Reserved	Only 0 allowed			
			0	Keep the current value		

			1	Reset to default values
6:0	6'b0	FDEV	The max offset of the frequency	

3.14.3.12 DAC_RANGE (RW) Address: 0dh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Reserved		DAC_RANGE_REG								
(0	0								
R			RW							

Description of Word

Bit	Value	Symbol		Description		
7:6	0	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
5:0	6'b0	DAC_RANGE_	DAC calibration Ran	nge control		
		REG				

3.14.3.13 DAC_IN (RW) Address: 0eh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reserved		DAC_IN						
0		0						
R		RW						

Description of Word

.

Bit	Value	Symbol	Description		
7	0	Reserved	Only 0 allowed		
			0	Keep the current value	
			1	Reset to default values	
6:0	6'b0	DAC_IN	DAC calibration In control		

3.14.3.14 CTUNING (RW) Address: 0fh

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	Reserved		CTUNING_REG_RX						
	0		0						
	R		RW						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

Reserved	CTUNING_REG_TX
0	0
R	RW

Description of Word

Bit	Value	Symbol		Description				
15:13	0	Reserved	Only 0 allowed					
			0	Keep the current value				
			1	Reset to default values				
12:8	6'b0	CTUNING_RE	AFC coarse tuning	AFC coarse tuning register control				
		G_RX						
7:5	0	Reserved	Only 0 allowed					
			0	Keep the current value				
			1	Reset to default values				
4:0	6'b0	CTUNING_RE	AFC coarse tuning	register control				
		G_TX						
3.14.3	8. 15 F	ΓUNING (RW)	Address: 10h					

3.14.3.15 FTUNING (RW) Address: 10h

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Reserved	FTUNING_REG_RX				
		0					
		R	RW				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reserved			FT	TUNING_REG_1	X
		0					
		R		RW			

Description of Word

Bit	Value	Symbol	Description			
15:11	0	Reserved	Only 0 allowed			
			0 Keep the current value			
			1	Reset to default values		
10:8	3'b0	CTUNING_RE	AFC fine tuning register control			
		G_RX				
7:3	0	Reserved	Only 0 allowed			
			0	Keep the current value		
			1	Reset to default values		
2:0	3'b0	CTUNING_RE	AFC fine tuning register control			
		G_TX				

RX_CTRL (RW) 3.14.3.16 Address: 11h

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24
Rss_est_en	Rss_clr_en	Rssi_est_mode	Rssi_est_mode xcorr_th_high[6:2]]	
1	0	1	0	1	1	0	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
xcorr_th_	_high[1:0]			$rssi_cond_th$			rssi_cond_en
0	0	0	0	1	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		buf_setl_len			buf_setl_confg	Spwr_t	h_mode
1	1	0	0	0	0	1	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
rss	i_k	bw_r	node	sync_	mode	h_:	idx
0	1	0	1	0	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Description of Word							

Description of Word

•

Bit	Value	Symbol	Description				
31	1	Rss_est_en	Rssi estimate enable				
30	0	Rss_clr_en	Rssi clear enable				
29	1	Rssi_est_mode	Rssi estimate mode				
28:22	7'b01100	xcorr_th_high	corr trigger threshold, high threshold for high snr packet				
	00						
21:17	4'b0100	rssi_cond_th	don't active trigger when rssi>rsssi_cond_th				
16	1	rssi_cond_en	ssi_cond_th enable				
15:11	5'b11000	buf_setl_len	buffer settle configure symbols length				
10	0	buf_setl_confg	'1' - buffer settle using corrlen, '0' - buffer settle using BUF_SETL_LEN configured;				
9:8	2'b10	Spwr_th_mode					
7:6	1	rssi_k	Default: 2^-5(about 80KHz bandwidth);				
			when 0, 2^-4				
			when 1, 2^-5				
			when 2, 2^-6				
			when 3, 2^-7				
5:4	1	bw_mode	bandwidth of the one-order loop:				
			when 0, 2^-4				
			when 1, 2^-5				
			when 2, 2^-6				
			when 3, 2^-7				

3:2	0	sync_mode	When 0, 4 address bytes are used for sync
			When 1, 1 preamble byte and 3 address bytes are used for sync
			When 2, only 3 address bytes are used for sync
1:0	1	h_idx	modualtion index:
			when 0: 0.25,
			when 1: 0.32,
			when 2: 0.50;

3.14.3.17 FAGC_CTRL (RW) Address: 12h

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24			
rese	erved		Snr_est							
	0	0	0	0	0	0	0			
RW	RW	RW	RW	RW	RW	RW	RW			
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16			
			Sig_dt	om_est						
0	0	0	0	0	0	0	0			
RW	RW	RW	RW	RW	RW	RW	RW			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
Reserved	rx_fa	gc_ref	lwin	gfagc_wen		gfagc_reg[10:8]				
0	1	0	0	0	0	0	0			
RW	RW	RW	RW	RW	RW	RW	RW			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	•		gfagc r	eg[7:0]						
			00=							
0	0	0	0	0	0	0	0			

Description of Word

Bit	Value	Symbol	Description
31:30	0	Reserved	
29:24	0	Snr_est	Snr estimate
23:16	0	Sig_dbm_est	Signal estimate dbm
15	0	Reserved	
14:13	2	rx_fagc_ref	[-6, -3, 0, 3]dB from 0.5;
12	0	lwin	0-64; 1-128 length;
11	0	gfagc_wen	Gfagc_o write enable signal
10:0	0	gfagc_reg	Gain of the fine AGC calculated

3.14.3.18 FAGC_CTRL_1 (RW) Address: 13h

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24	
cry_500k_pd_r	cry_500k_pd_	Force_cal	pkdet_vrefc			pkdet_	_vref2c	
eg	mn							
0	0	1		3'h2			1	
RW	RW	RW		RW		R	W	
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	
agc_sel			aį	gc_dpd_lo_thr[10:	:4]			
0				7'h8				
RW	RW							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	agc_dpd_l	o_thr[3:0]		Agc_reset_cnt [11:8]				
	1	1			4'	h4		
	R	W			R	W		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
			Agc_res	et_cnt[7:0]				
			8'	h00				
			R	RW				
Description of V	Vord	•			9			

Description of Word

.

Descrip	Description of Word							
Bit	Value	Symbol		Description				
31	0	cry_500k_pd_re	500k crystal pow	er down control				
		g						
30	0	cry_500k_pd_m	500k crystal powe	er down control select. 1: register 0: state machine				
		n						
29	1	Force_cal	Before every tran	Before every transmit and receive do calibration				
28:26	3'b010	pkdet_vrefc	Pkdet vrefc value					
25:24	1	pkdet_vref2c	Pkdet vref2c valu	e				
23	0	agc_sel	Agc select					
			0	Select agc 0				
			1	Select age 1				
22:12	11'h081	agc_dpd_lo_thr	Agc_dpd_lo three	shold				
11:0	12'h400	Agc_reset_cnt	Agc reset counter					

3.14.3.19 DAC_CAL_LOW (RW) Address: 17h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserved		dac_cal_low							
0				0					

RW

Description of Word

Bit	Value	Symbol		Description			
7	0	Reserved	Only 0 allowed				
			0	Keep the current value			
			1	Reset to default values			
6:0	0	dac_cal_low	DAC calibration LO	W value			

DAC_CAL_HI (RW) Address: 18h 3.14.3.20

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reserved	dac_cal_hi										
0	8'h7f										
RO		RW									
Description	of Word										

Description of Word

Bit	Value	Symbol	Description
7	0	Reserved	Only 0 allowed
			0 Keep the current value
			1 Reset to default values
6:0	7'h7f	dac_cal_hi	DAC calibrartion HIGH value

3.14.3.21 DOC_DACI (RW) Address: 1ah

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	doc_daci						
0				0			
RW				RW			

Description of Word

Bit	Value	Symbol		Description			
7	0	Reserved	Only 0 allowed				
			0	Keep the current value			
			1	Reset to default values			
6:0	0	doc_daci	Doc calibrationdaci	value			

3.14.3.22 DOC_DACQ (RW) Address: 1bh

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Reserved		doc_dacq								
0		0								
RW				RW						

Description of Word

Bit	Value	Symbol		Description			
7	0	Reserved	Only 0 allowed				
			0	0 Keep the current value			
			1	Reset to default values			
6:0	0	doc_dacq	Doc calibration dacq	value			

3.14.3.23 AGC_CTRL (RW) Address: 1ch

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24		
	test_pat								
0	0	0	0	0	0	0	0		
RW	RW	RW	RW	RW	RW	RW	RW		
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16		
test_pat_en		adp_samp_mode		agc_sam	np_mode	agc_dpd_mode	agc_dpd_thr_d		
				*			b[5]		
0	0	0	0	1	0	0	1		
RW	RW	RW	RW	RW	RW	RW	RW		
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	ag	gc_dpd_thr_db[4:	0]			agc_dpd_thr[10:8]		
1	0	0	1	1	0	1	0		
RW	RW	RW	RW	RW	RW	RW	RW		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	agc_dpd_thr[7:0]								
0	0	0	0	0	0	0	0		
RW	RW	RW	RW	RW	RW	RW	RW		

Description of Word

Bit	Value	Symbol	Description
31:24	0	test_pat[7:0]	Test pattern of Analog
23	0	test_pat_en	Test pattern enable

22:20	0	adp_samp_i	mode Number	of clock cycles d	elay between ever	ry two apd detecti	on:			
			When 0,	hen 0, 0 cycles						
			When 1,	2 cycles						
			When 2,	Then 2, 4 cycles						
			When 3,	Then 3, 8 cycles						
			When 4,	16 cycles						
			When 5,	32 cycles						
19:18	2	agc_samp_1	node The num	ber of shift regist	ers which are req	uired for Dpdcalc	ulation.			
			When 0,	2 registers						
			When 1,	4 registers						
			When 2,	8 registers						
			When 3,	16 registers						
17	0	agc_dpd_n	node '0': mean	of sample ampli	tudes, '1': max of	sample amplitude	es;			
16:11	33	agc_dpd_th	r_db dB value	of dpd_hi_th mi	nus backoff dB va	alue of the Dpd w	hich is 3 in defau	lt.		
10:0	200	agc_dpd_	thr Default	hresholdwhendp	d is detected.					
3.14.3.24 AGC_GAIN (RW) Address: 1dh										
Bi	t 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24		

3.14.3.24 AGC_GAIN (RW) Address: 1dh

Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24
agc_gain_mn			apd_clr_cnt_th			apd_det_cnt_th[4:3]	
0	0	0	1	1	1	0	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
aj	pd_det_cnt_th[2:0	0]		d	pd_clr_cnt_th[5:1	[]	
1	1	0	0	1	0	1	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
dpd_clr_cnt_th	rese	rved	Agc_apd_st	ate_reg[1:0]	Age	c_dpd_state_reg[2:0]
[0]			*				
1	1	0	0	0	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Agc_dpd_state_reg[10:3]				
0	0	0	0	0	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW

Description of Word

•

Bit	Value	Symbol		Description			
31	1	agc_gain_mn	Age output gain is get from software or hardware caculation				
			1	From software			
			0	From hardware			

30:26	7	apd_clr_cnt_th	Analog Gsw+Gsetl time interval
		[4:0]	
25:21	6	apd_det_cnt_th	Apd detection time interval
		[4:0]	
20:15	6'h17	dpd_clr_cnt_th	DigitalGsw+Gsetl time interval, and add Dpd detection time interval
		[5:0]	
14:13	2	reserved	
12:11	0	Agc_apd_state_r	When agc_gain_mn is 1, the value read from this register is the Lna gain given by the
		eg	software. When agc_gain_mn is 0, the value read from this register is the Lna gain
			calculated from the hardware module
10:0	101	Agc_dpd_state_	When agc_gain_mn is 1, the value read from this register is the filter gain given by the
		reg	software. When agc_gain_mn is 0, the value read from this register is the filter gain
			calculated from the hardware module

3.14.3.25 RF_IVGEN (RW) Address: 1eh

3.14.3.25	RF_IVGEN (R	W) Address	s: 1eh				
D'(21	D: 20	D: 00	D: 00	D': 07	Dia	D'1 25	D'(24
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24
Calib_rx_reg	Tx_0_1_rvs	Pd_lna_reg	Pd_lna_mn	Pd_pa_reg	Pd_pa_mn		obias
0	0	0	0	0	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
Pd_adc_ldo_re	Pd_adc_ldo_m	Pd_mix_reg	Pd_mix_mn	Pd_bg_reg	Pd_bg_mn	Bm	_lna
g	n						
0	0	0	0	0	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Bm_	filter		filter_mcap1			filter_mcap2	
0	1	1	0	0	1	0	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Pa_voltage	Pd_xtal_reg	Pd_xtal_mn			Xtal_cc		
0	0	0	1	0	1	1	1
RW	RW	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol		Description		
31	0	Calib_rx_reg	Manual calibrat	Aanual calibration TX/RX select		
			1	Manual calibration for RX		
			0	Manual calibration for TX		
30	0	Tx_0_1_rvs	TX 0/1 reverse	X 0/1 reverse		
			1	Reverse the 0/1 when transmit		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0	Not reverse			
Image: Constraint of the constr	29	0	Pd_lna_reg	Pd_lna manual	value			
$ \begin{array}{ c c c c c } \hline 0 & From FSM \\ \hline 0 & From FSM \\ \hline \hline \\ 27 & 0 & Pd_pa_reg & Pd_pa manual value \\ \hline \\ 26 & 0 & Pd_pa_mm & Pd_pa manual select \\ \hline \hline \\ 1 & from register \\ \hline 0 & From FSM \\ \hline \\ 25:24 & 1 & Tia_lobias & Output to analogue \\ \hline \\ 23 & 0 & Pd_adc_ldo_reg & Pd_adc_ldo manual value \\ \hline \\ 22 & 0 & Pd_adc_ldo_mm & \hline \\ Pd_adc_ldo manual select \\ \hline \\ 1 & from register \\ \hline \\ 0 & From FSM \\ \hline \\ 21 & 0 & Pd_mix_reg & Pd_mix manual value \\ \hline \\ 20 & 0 & Pd_mix_reg & Pd_mix manual value \\ \hline \\ 20 & 0 & Pd_mix_reg & Pd_mix manual value \\ \hline \\ 1 & from register \\ \hline \\ 0 & From FSM \\ \hline \\ 10 & From FSM \\ \hline \\ 11 & from register \\ \hline \\ 0 & From FSM \\ \hline \\ 19 & 0 & Pd_bg_reg & Pd_bg manual value \\ \hline \\ 18 & 0 & Pd_bg_reg & Pd_bg manual value \\ \hline \\ 18 & 0 & Pd_bg_rmn & \hline \\ 19 & 0 & Pd_bg_rmn & \hline \\ 10 & from fegister \\ \hline \\ 0 & From FSM \\ \hline \\ 17:16 & 0 & Bm_lna & Output to analogue \\ \hline \\ 11 & from register \\ \hline \\ 0 & From FSM \\ \hline \\ 12:11 & 4 & filter_mcap1 & Output to analogue \\ \hline \\ 13:11 & 4 & filter_mcap2 & Output to analogue \\ \hline \\ 18 & 0 & Pd_valage Pa_voltage Pa_v$	28	0	Pd_lna_mn	Pd_lna manual	select			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1	d_lna manual value d_lna manual select from register From FSM d_pa manual value d_pa manual select from register From FSM utput to analogue d_adc_ldo manual value d_adc_ldo manual select from register From FSM d_mix manual value d_mix manual select from register From FSM d_mix manual select from register From FSM d_bg manual value d_bg manual select From FSM d_bg manual select from register From FSM d_bg manual select from register From FSM d_bg manual select from register From FSM d_bg manual select from register From FSM utput to analogue utput to analogue			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0	From FSM			
$ \begin{array}{ c c c c c c c c } \hline l & l & l & l & l & l & l & l & l & l$	27	0	Pd_pa_reg	Pd_pa manual	value			
$ \begin{array}{ c c c c c } \hline 0 & From FSM \\ \hline 25:24 & 1 & Tia_lobias & Output to analogue \\ \hline 23 & 0 & Pd_adc_ldo_reg & Pd_adc_ldo manual value \\ \hline 22 & 0 & Pd_adc_ldo_mn & Pd_adc_ldo manual select \\ \hline 1 & from register \\ \hline 0 & From FSM \\ \hline 21 & 0 & Pd_mix_reg & Pd_mix manual value \\ \hline 20 & 0 & Pd_mix_rm & Pd_mix manual value \\ \hline 10 & Pd_bg_reg & Pd_bg manual value \\ \hline 11 & from register \\ \hline 0 & From FSM \\ \hline 19 & 0 & Pd_bg_reg & Pd_bg manual value \\ \hline 18 & 0 & Pd_bg_rm & Pd_bg manual select \\ \hline 11 & from register \\ \hline 0 & From FSM \\ \hline 17:16 & 0 & Bm_ina & Output to analogue \\ \hline 17:16 & 0 & Bm_ina & Output to analogue \\ \hline 13:11 & 4 & filter_mcap1 & Output to analogue \\ \hline 10:8 & 4 & filter_mcap2 & Output to analogue \\ \hline 7 & 0 & Pa_voltage & Pa voltage output to analogue \\ \hline 5 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn & Pd_xtal manual value \\ \hline 15 & 0 & Pd_xtal_mn \\ \hline 15 & 0 & Pd_$	26	0	Pd_pa_mn	Pd_pa manual s	select			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1	from register			
230Pd_adc_ldo_regPd_adc_ldo manual value220Pd_adc_ldo_regPd_adc_ldo manual select1from register0From FSM210Pd_mix_regPd_mix manual value200Pd_mix_mnPd_mix manual select1from register0From FSM200Pd_bg_regPd_bg manual select1from register0From FSM190Pd_bg_regPd_bg manual select180Pd_bg_mnPd_bg manual select17.160Bm_lnaOutput to analogue15.141Bm_filterOutput to analogue13.114filter_mcap1Output to analogue10:84filter_mcap2Output to analogue70Pa_voltagePa voltage output to analogue60Pd_xtal_mnPd_xtal manual value50Pd_xtal_mnPd_xtal manual select				0	From FSM			
220Pd_adc_ldo_mnPd_adc_ldo manual select1from register0From FSM210Pd_mix_regPd_mix manual value200Pd_mix_mnPd_mix manual select1from register0From FSM190Pd_bg_regPd_bg manual select180Pd_bg_mnPd_bg manual select11from register0120Pd_bg_mn13:114filter_mcap110:84filter_mcap270Pa_voltage70Pa_voltage9Pd_xtal_manPd_xtal manual value	25:24	1	Tia_lobias	Output to analo	ogue			
$ \begin{array}{ c c c c c } \hline & & & \hline & & \hline & & & & \hline & & & \hline & & & & & \hline & & & & \hline & & & & \hline & & & & & & \hline & & & & & \hline & & & & & & & \hline & & & & & & & \hline & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & \hline & & & & & & & & \hline & & & & & & & & \hline & & & & & & & & & \hline & & & & & & & & & & \hline & & & & & & & & & & & \hline &$	23	0	Pd_adc_ldo_reg	Pd_adc_ldo ma	nual value			
0 From FSM 21 0 Pd_mix_regPd_mix manual value 20 0 Pd_mix_mnPd_mix manual select 1 from register 0 From FSM 19 0 Pd_bg_regPd_bg manual value 18 0 Pd_bg_mnPd_bg manual select 11 from register 0 From FSM 11 from register 0 From FSM 11 from register 0 From FSM $17:16$ 0 0 Bm_lna $0utput to analogue$ $15:14$ 1 1 filter_mcap1 $0utput to analogue$ $10:8$ 4 4 filter_mcap2 0 $Pa_voltage$ $Pa_voltage$ $Pa voltage output to analogue60Pd_xtal_regPd_xtal manual value50Pd_xtal_mnPd_xtal manual select$	22	0	Pd_adc_ldo_mn	Pd_adc_ldo ma	nual select			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1	from register			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0	From FSM			
$\begin{array}{ c c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline 1 & & & & & \\ 1 & & & & & \\ \hline 1 & & & & \\ 1 & & & & & \\ 1 & & & & \\ 1 & & & &$	21	0	Pd_mix_reg	Pd_mix manual	l value			
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & \\ \hline 19 & 0 & Pd_bg_reg & Pd_bg_manual value \\ \hline 18 & 0 & Pd_bg_mn & \hline Pd_bg_manual select \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & & \\ \hline 1 & & & & & \\ 1 & & & & & \\ \hline 1 & & & & & \\ 1 & & & & & \\ 1 & & & & &$	20	0	Pd_mix_mn	Pd_mix manual	l select			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	from register			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0	From FSM			
1 from register 0 From FSM 17:16 0 Bm_lna 0utput to analogue 0 15:14 1 Bm_filter 0utput to analogue 0 13:11 4 filter_mcap1 0utput to analogue 0 10:8 4 filter_mcap2 0utput to analogue 0 7 0 Pa_voltage Pa voltage output to analogue 0 6 0 Pd_xtal_reg 9 Pd_xtal_mn Pd_xtal manual select	19	0	Pd_bg_reg	Pd_bg manual	value			
0From FSM17:160Bm_lnaOutput to analogue15:141Bm_filterOutput to analogue13:114filter_mcap1Output to analogue10:84filter_mcap2Output to analogue70Pa_voltagePa voltage output to analogue60Pd_xtal_regPd_xtal manual value50Pd_xtal_mnPd_xtal manual select	18	0	Pd_bg_mn	Pd_bg manual s	select			
17:160Bm_lnaOutput to analogue15:141Bm_filterOutput to analogue13:114filter_mcap1Output to analogue10:84filter_mcap2Output to analogue70Pa_voltagePa voltage output to analogue60Pd_xtal_regPd_xtal manual value50Pd_xtal_mnPd_xtal manual select				1	from register			
15:14 1 Bm_filter Output to analogue 13:11 4 filter_mcap1 Output to analogue 10:8 4 filter_mcap2 Output to analogue 7 0 Pa_voltage Pa voltage output to analogue 6 0 Pd_xtal_reg Pd_xtal manual value 5 0 Pd_xtal_mnn Pd_xtal manual select				0	From FSM			
13:11 4 filter_mcap1 Output to analogue 10:8 4 filter_mcap2 Output to analogue 7 0 Pa_voltage Pa voltage output to analogue 6 0 Pd_xtal_reg Pd_xtal manual value 5 0 Pd_xtal_mn Pd_xtal manual select	17:16	0	Bm_lna	Output to analo	ogue			
10:8 4 filter_mcap2 Output to analogue 7 0 Pa_voltage Pa voltage output to analogue 6 0 Pd_xtal_reg Pd_xtal manual value 5 0 Pd_xtal_mn Pd_xtal manual select	15:14	1	Bm_filter	Output to analo	ogue			
7 0 Pa_voltage Pa voltage output to analogue 6 0 Pd_xtal_reg Pd_xtal manual value 5 0 Pd_xtal_mn Pd_xtal manual select	13:11	4	filter_mcap1	Output to analo	ogue			
6 0 Pd_xtal_reg Pd_xtal manual value 5 0 Pd_xtal_mn Pd_xtal manual select	10:8	4	filter_mcap2	Output to analo	ogue			
5 0 Pd_xtal_mn Pd_xtal manual select	7	0	Pa_voltage	Pa voltage outp	but to analogue			
	6	0	Pd_xtal_reg	Pd_xtal manual	l value			
4:0 5'b11111 Xtal_cc Output to analogue	5	0	Pd_xtal_mn	Pd_xtal manual	l select			
	4:0	5'b11111	Xtal_cc	Output to analo	gue			

3.14.3.26 TEST_PKDET (RW) Address: 1fh

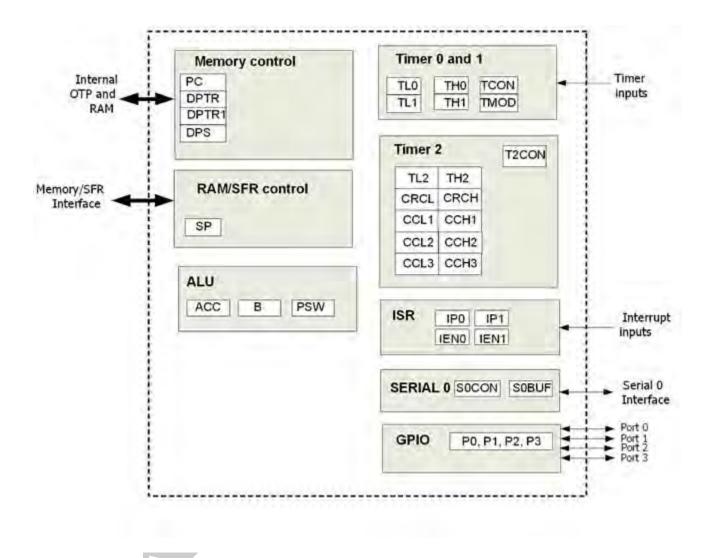
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit24
test_en	Xcorr_filt_en		sync_burst_cnt pll_icp			ep_sel	
0	1	1	1	1	1	0	1
RW	RW	RW	RW	RW	RW	RW	RW
Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
test_mode			test_point_sel1		test_po	int_sel0	
0	0	0	0	0	0	0	0

RW	RW	RW	RW	RW	RW	RW	RW
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
pkdet_vref							
0	0	0	1	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
xtal	resc	bm_xtal	Dc_est_bypass	pll_vdi	iv2_sel	pll_d	et_set
0	0	1	0	1	0	0	1
RW	RW	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description
31	0	test_en	Test enable output to analogue
30	1	Xcorr_filt_en	
29:26	4'hf	sync_burst_cnt	The number of symbols delay are required before generating the sync_det pulse
25:24	1	pll_icp_sel [1:0]	Output to analogue
23:21	0	test_mode[2:0]	Output to analogue
20:18	0	test_point_sel1	Output to analogue
		[2:0]	
17:16	00	test_point_sel0	Output to analogue
		[1:0]	
15.0	021.10	11. 57.01	
15:8	8'h10	pkdet_vref[7:0]	Output to analogue
7:6	0	xtal_resc[1:0]	Output to analogue
7.0	0	xtal_lese[1.0]	
5	1	bm_xtal	Output to analogue
5	I	Jun_Xun	
4	0	Dc_est_bypass	
· ·	v	20_051_07Puss	

.


<u>KT8P01</u>

3:2	2	pll_vdiv2_sel	Output to analogue
		[1:0]	
1:0	1	pll_det_set[1:0]	Output to analogue

4 MCU

4.1 Block diagram

4.2 Features

Control Unit

- 8-bit instruction decoder
- Reduced instruction cycle time (up to 12 times in respect to standard 80C51)
- Arithmetic-Logic Unit
 - 8-bit arithmetic and logical operations
 - Boolean manipulations
- Three 16-bit Timers/Counters
 - 80C51-like Timer 0 & 1
 - 80515-like Timer 2
- Compare/Capture Unit, dedicated to Timer 2
 - Software control capture
 - Full Duplex Serial Interfaces
 - Serial 0 (80C51-like)
 - Synchronous mode, fixed baud rate
 - 8-bit UART mode, variable baud rate
 - 9-bit UART mode, fixed baud rate
 - 9-bit UART mode, variable baud rate
 - Baud Rate Generator
- Interrupt Controller
 - Four Priority Levels with 13 interrupt sources
- Memory interface
 - 16-bit address bus
 - Dual Data Pointer for fast data block transfer

4.3 Instructions in Functional Order

4.3.1 Arithmetic Operations

Mnemonic	Description	Code	Bytes	Cycles
ADD A,Rn	Add register to accumulator	0x28-0x2F	1	1
ADD A, direct	Add directly addressed data to accumulator	0x25	2	2
ADD A,@Ri	Add indirectly addressed data to accumulator	0x26-0x27	1	2
ADD A,#data	Add immediate data to accumulator	0x24	2	2
ADDC A,Rn	Add register to accumulator with carry	0x38-0x3F	1	1
ADDC A, direct	Add directly addressed data to accumulator with carry	0x35	2	2
ADDC A,@Ri	Add indirectly addressed data to accumulator with carry	0x36-0x37	1	2
ADDC A,#data	Add immediate data toaccumulator with carry	0x34	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	0x98-0x9F	1	1
SUBB A, direct	Subtract directly addressed data from accumulator with borrow	0x95	2	2
SUBB A,@Ri	Subtract indirectly addressed data from accumulator with borrow	0x96-0x97	1	2
SUBB A,#data	Subtract immediate data from accumulator with borrow	Ox94	2	2
INC A	Increment accumulator	0x04	1	1
INC Rn	Increment register	0x08-0x0F	1	1

				_
INC direct	Increment directly addressed location	0x05	2	2
INC @Ri	Increment indirectly addressed location	0x06-0x07	1	2
INC DPTR	Increment data pointer	0xA3	1	1
DEC A	Decrement accumulator	0x14	1	1
DEC Rn	Decrement register	0x18-0x1F	1	1
DEC direct	Decrement directly addressed location	0x15	2	2
DEC @Ri	Decrement indirectly addressed location	0x16-0x17	1	2
MUL AB	Multiply A and B	0xA4	1	4
DIV	Divide A by B	0x84	1	4
DAA	Decimally adjust accumulator	0xD4	1	1

4.3.2 Logic Operations

Mnemonic	Description	Code	Bytes	Cycles
ANL A,Rn	AND register to accumulator	0x58-0x5F	1	1
ANL A, direct	AND directly addressed data to accumulator	0x55	2	2
ANL A,@Ri	AND indirectly addressed data to accumulator	0x56-0x57	1	2
ANL A,#data	AND immediate data to accumulator	0x54	2	2
ANL direct,A	AND accumulator to directly addressed location	0x52	2	2
ANL direct,#data	AND immediate data to directly addressed location	0x53	3	3
ORL A,Rn	OR register to accumulator	0x48-0x4F	1	1
ORL A, direct	OR directly addressed data to accumulator	0x45	2	2
ORL A,@Ri	OR indirectly addressed data to accumulator	0x46-0x47	1	2
ORL A,#data	OR immediate data to accumulator	0x44	2	2
ORL direct,A	OR accumulator to directly addressed location	0x42	2	2
ORL direct,#data	OR immediate data todirectly addressed location	0x43	3	3
XRL A,Rn	Exclusive OR registerto accumulator	0x68-0x6F	1	1
XRL A, direct	Exclusive OR directly addressed data to accumulator	0x65	2	2
XRL A,@Ri	Exclusive OR indirectly addressed data to accumulator	0x66-0x67	1	2
XRL A,#data	Exclusive OR immediate data to accumulator	0x64	2	2
XRL direct,A	Exclusive OR accumulator to directly addressed	0x62	2	2
	location			
XRL direct,#data	Exclusive ORimmediate data to directly addressed location	0x63	3	3
CLR A	Clear accumulator	0xE4	1	1
CPL A	Complement accumulator	0xF4	1	1
RL A	Rotate accumulator left	0x23	1	1
RLC A	Rotate accumulator left through carry	0x33	1	1
RR A	Rotate accumulator right	0x03	1	1
RRC A	Rotate accumulator right through carry	0x13	1	1
SWAP A	Swap nibbles within the accumulator	0xC4	1	1

4.3.3 Data Transfer Operations

Mnemonic	Description	Code	Bytes	Cycles
MOV A,Rn	Move register to accumulator	0xE8-0xEF	1	1
MOV A, direct	Move directly addressed data to accumulator	0xE5	2	2
MOV A,@Ri	Move indirectly addressed data to accumulator	0xE6-0xE7	1	2
MOV A,#data	Move immediate data to accumulator	0x74	2	2
MOV Rn,A	Move accumulator to register	0xF8-0xFF	1	1
MOV Rn, direct	Move directly addressed data to register	0xA8-0xAF	2	2
MOV Rn,#data	Move immediate data to register	0x78-0x7F	2	2
MOV direct,A	Move accumulator to direct	0xF5	2	2
MOV direct,Rn	Move register to direct	0x88-0x8F	2	2
MOV direct1, direct2	Move directly addressed data to directly addressed location	0x85	3	3
MOV direct,@Ri	Move indirectly addressed data to directly addressed location	0x86-0x87	2	2
MOV direct,#data	Move immediate data to directly addressed location	0x75	3	3
MOV @Ri,A	Move accumulator to indirectly addressed location	0xF6-0xF7	1	1
MOV @Ri,direct	Move directly addressed data to indirectly addressed location	0xA6-0xA7	2	2
MOV @Ri,#data	Move immediate data to in directly addressed location	0x76-0x77	2	2
MOV DPTR,#data16	Load data pointer with a 16-bit immediate	0x90	3	3
MOVCA,@A+DPTR	Load accumulator with a code byte relative to DPTR	0x93	1	3
MOVC A,@A+PC	Load accumulator with a code byte relative to PC	0x83	1	3
MOVX A,@Ri	Move external RAM (8-bit addr.) to accumulatora	0xE2-0xE3	1	3-10
MOVX A,@DPTR	Move external RAM (16-bit addr.) to accumulatora	0xE0	1	3-10
MOVX @Ri,A	Move accumulator to external RAM (8-bit addr.)a	0xF2-0xF3	1	3-12
MOVX @DPTR,A	Move accumulator to external RAM (16-bit addr.)a	0xF0	1	3-12
PUSH direct	Push directly addressed data onto stack	0xC0	2	2
POP direct	Pop directly addressed location from stack	0xD0	2	2
XCH A,Rn	Exchange register with accumulator	0xC8-0xCF	1	1
XCH A, direct	Exchange directly addressed location with accumulator	0xC5	2	2
XCH A,@Ri	Exchange indirect RAM with accumulator	0xC6-0xC7	1	2
XCHD A,@Ri	Exchangelow-ordernibbles of indirectand accumulator	0xD6-0xD7	1	2

Note:

.

a. The MOVX instructions perform one of two actions depending on the state of "pmw" bit (pcon.4).

4.3.4 Program Branches

Mnemonic	Description	Code	Bytes	Cycles
ACALL addr11	Absolute subroutine call	xxx10001b	2	2
LCALL addr16	Long subroutine call	0x12	3	3
RET	Return from subroutine	0x22	1	4

RETI	Return from interrupt	0x32	1	4		
AJMP addr11	Absolute jump	2	2			
LJMP addr16	Long jump	3	3			
SJMP rel	Short jump (relative address)	2	2			
JMP @A+DPTR	Jump indirect relative to the DPTR	1	3			
JZ rel	Jump if accumulator is zero	2	3			
JNZ rel	Jump if accumulator is not zero	0x70	2	3		
JC rel	Jump if carry flag is set	0x40	2	3		
JNC	Jump if carry flag is not set	0x50	2	3		
JB bit,rel	Jump if directly addressed bit is set	0x20	3	4		
JNB bit,rel	Jump if directly addressed bit is not set	Jump if directly addressed bit is not set 0x30				
JBC bit,rel	Jump if directly addressed bit is set and clear bit	3	4			
CJNE A, direct, rel	Compare directly addressed data to accumulator and jump if	0xB5	3	4		
	not equal					
CJNE A,#data,rel	Compare immediate data to accumulator and jump	0xB4	3	4		
	if not equal					
CJNERn,#data,rel	Compare immediate data to register and jump	0xB8-0xBF	3	4		
	if not equal					
CJNE @Ri,#data,rel	Compare immediate to indirect and jump if not equal	B6-B7	3	5		
DJNZ Rn,rel	Decrement register and jump if not zero	D8-DF	2	3		
DJNZ direct,rel	Decrement directly addressed location and jumpif not zero	D5	3	4		
NOP	No operation	00	1	1		
4.3.5 Boolean Ma	anipulation					

Boolean Manipulation 4.3.5

.

Mnemonic	Description	Code	Bytes	Cycles
CLR C	Clear carry flag	0xC3	1	1
CLR bit	Clear directly addressed bit	0xC2	2	2
SETB C	Set carry flag	0xD3	1	1
SETB bit	Set directly addressed bit	0xD2	2	2
CPL C	Complement carry flag	0xB3	1	2
CPL bit	Complement directly addressed bit	0xB2	2	2
ANL C,bit	AND directly addressed bit to carry flag	0x82	2	2
ANL C,/bit	AND complement of directly addressed bit to carry	0xB0	2	2
ORL C,bit	OR directly addressed bit to carry flag	0x72	2	2
ORL C,/bit	OR complement of directly addressed bit to carry	0xA0	2	2
MOV C,bit	Move directly addressed bit to carry flag	0xA2	2	2
MOV bit,C	Move carry flag to directly addressed bit	0x92	2	2

The duration of each instruction can becalculated using the formula below.

If (BYTES > 1 or CYCLES = 1) then

DURATION = CYCLES + (BYTES+R)*P + X*D

else

DURATION = CYCLES + (2+R)*P + X*D

Where:

- BYTES is the number of bytes for the instruction (see tables above)

- CYCLES is the number of cycles for no wait states (see tables above)

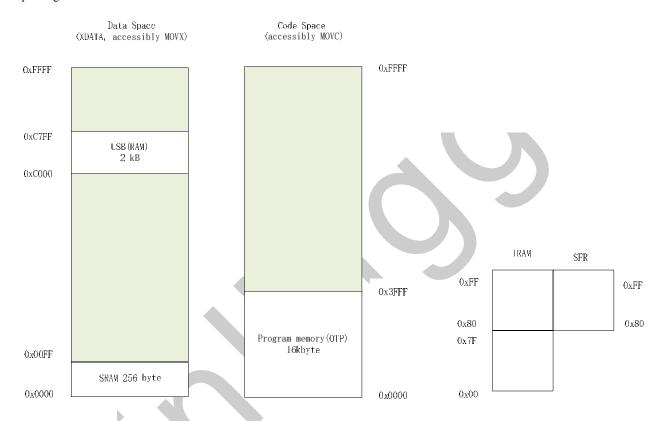
- R = 1 for the MOVC instruction, otherwise R = 0

- X = 1 for MOVX instructions, otherwise X = 0

- P = number of program memory wait states (= "ckcon[6:4]")

- D = number of data memory wait states (= "ckcon[2:0]").

In the Program Memory Write mode (PMW) the formula for MOVX is as follows:


DURATION = CYCLES + (2+X)*P

5 Memory and I/O organization

The MCU has 64 kB of separate address space for code and data, an area of 256 byte for internal data (IRAM) and an area of 128 byte for Special Function Registers (SFR).

The memory block has a default setting of 16 kB program memory (OTP) and 256 byte of user memory (SRAM) see default memory map in Figure 1.

The lower 128 bytes of the IRAM contains work registers (0x00-0x1F) and bit addressable memory (0x20-0x2F). The upper half can only be accessed by indirect addressing.

The lowest 32 bytes of the IRAM form four banks, each consisting of eight registers (R0-R7). Two bits of the program memory status word (PSW) select which bank is used. The next 16 bytes of memory form a block of bit-addressable memory, accessible through bit addresses 0x00-0x7.

5.1 CPU Special Function Registers

5.1.1 Accumulator – ACC

Accumulator is used by most of the MCU instructions to hold the operand and to store the result of an operation. The mnemonics for accumulator specific instructions refer to accumulator as A, not ACC.

								NIOF	
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0xE0	acc.7	acc.6	acc.5	acc.4	acc.3	acc.2	acc.1	acc.0	

5.1.2 B register – B

The B register is used during multiplying and division instructions. It can also be used as a scratch-pad register to hold temporary data.

Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF0	b.7	b.6	b.5	b.4	b.3	b.2	b.1	b.0

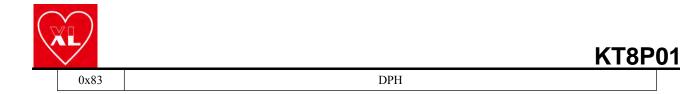
5.1.3 Program Status Word Register – PSW

The PSW register contains status bits that reflect the current state of the MCU.

Note: The Parity bit can only be modified by hardware upon the state of ACC register.

Address	Bit	Name	Description
0xD0	7	cy	Carry flag: Carry bit in arithmetic operations and accumulator for Boolean operations.
	6	ac	Auxiliary Carry flag: Set if there is a carry-out from 3 rd bit of Accumulator in BCD operations
	5	f0	General purpose flag 0
	4:3	rs	Register bank select, bank 03 (0x00–0x07, 0x08–0x0f, 0x10–0x17, 0x18–0x1f)
	2	ov	Overflow flag: Set if overflow in Accumulator during arithmetic operations
	1	fl	General purpose flag 1
	0	р	Parity flag: Set if odd number of '1' in ACC

5.1.4 Stack Pointer – SP


This register points to the top of stack in internal data memory space. It is used to store the return address of a program before executing interrupt routine or subprograms. The SP is incremented before executing PUSH or CALL instruction and it is decremented after executing POP or RET(I) instruction (it always points to the top of stack).

Address	Register name
0x81	SP

5.1.5 Data Pointer – DPH, DPL

Address	Register name
0x82	DPL

ταρι

The Data Pointer Registers can be accessed through DPL and DPH. The actual data pointer is selected by DPS register. These registers are intended to hold 16-bit address in the indirect addressing mode used by MOVX (move external memory), MOVC (move program memory) or JMP (computed branch) instructions. They may be manipulated as 16-bit register or as two separate 8-bit registers. DPH holds higher byte and DPL holds lower byte of indirect address. It is generally used to access external code or data space (for example, MOVC A, @A+DPTR or MOV A, @DPTR respectively).

5.1.6 Data Pointer 1 – DPH1, DPL1

	Address	Register name
ſ	0x84	DPL1
Ī	0x85	DPH1

The Data Pointer Register 1 can be accessed through DPL1 and DPH1. The actual data pointer is selected by DPS register.

These registers are intended to hold 16-bit address in the indirect addressing mode used by MOVX (move external memory), MOVC (move program memory) or JMP (computed branch) instructions. They may be manipulated as 16-bit register or as two separate 8-bit registers. DPH1 holds higher byte and DPL1 holds lower byte of indirect address.

It is generally used to access external code or data space (for example, MOVC A,@A+DPTR or MOV A,@DPTR respectively). The Data Pointer 1 is an extension to the standard 8051 architecture to speed up block data transfers.

5.1.7 Data Pointer Select Register – DPS

The MCU contains two Data Pointer registers. Both of them can be used as 16-bits address source for indirect addressing. The DPS register serves for selecting active data pointer register.

Address	Bit	Name	Description
0x92	7:1	-	Not used
	0	dps	Data Pointer Select. 0: select DPH:DPL, 1: select DPH1:DPL1

5.1.8 PCON register

The PCON register is used to control the Program Memory Write Mode and Serial Port 0 baud rate select. Default value: 0x08

Address	Bit	Name	Description
0x87	7	smod	Serial port 0 baud rate select
	6	-	Not used
	5	isr_tm	Interrupt Service Routine Test Mode flag: When set to 1, the interrupt vectors assigned
			to Timer 0 & 1, Serial Port 0 & 1 interfaces can be triggered only with the use of
			external inputs of the core

	4	pmw	Program memory write mode:	Ι
			1: MOVX instructions will access memory code space	
			0: MOVX instructions will access memory data space	
	3	-	Not used	
	2	gf0	General purpose flag 0]
	1	-	Not used. This bit must always be cleared. Always read as 0.	
	0	-	Not used. This bit must always be cleared. Always read as 0.	

5.1.9 Clock Control Register – CKCON

The content of this register defines the number of internally generated wait states that occur during read/write accesses to external data and program memory. It also controls the type of write access to either of the memory spaces.

Default value: 0x71

Address	Bit	Name	Description
0x8E	7	-	Keep setting 1
	6:4	pw	Program memory wait state control
	3	-	Keep setting 1
	2:0	ds	External data memory stretch cycle control.

5.1.10 Software Reset Register SRST

The software reset will be accomplished through the SRST SFR register. The contents of this register are presented below.

Address	Bit	Name	Description
0xF7	7:1	-	Not used
	0	srstreq	Software reset request.
			Writing '0' value to this bit will have no effect. Single writing '1' value to this bit will
			have no effect. Double writing '1' value (in two consecutive instructions) will generate
			an internal software reset.
			Reading this bit will inform about the reset source:
			if '0' - source of last reset sequence was not a software reset (hardware, watchdog or
			pin reset);
			If '1' – source of last reset sequence was a software reset (caused by double writing '1'
			value to the "srstreq" bit).

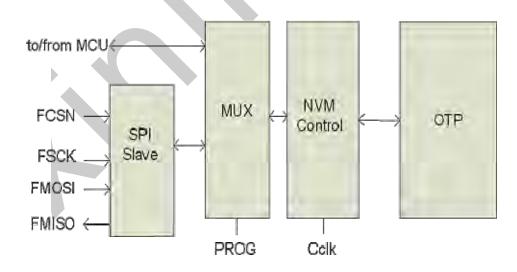
5.1.11 Special Function Register Map

Address	X000	X001	X010	X011	X100	X101	X110	X111
0xF8–0xFF	FSR			SPIDLY	SPIMCON0	SPIMCON1	SPIMSTAT	SPIMDAT

В		SPITEST		CPLDOCO	CIDH	CIDL	SRST
				Ν			
RFCON	MD0	MD1	MD2	MD3	MD4	MD5	ARCON
ACC	CFG_DFEN	CFG_DFEN	CFG_DFEN_		SPIRCON	SPIRSTAT	SPIRDAT
	_P0	_P1	P2				
ADCON	PWMCR0	PWMCON1	USBPCON1	POFCON	CCEN1	DBGSEL0	DBGSEL1
PSW	-	T2IER	T2SR	PWMCR1	PWMDC3	PWMDC4	PWMDC5
T2CON	-	CRCL	CRCH	TL2	TH2	USBCON	USBPCON
IRCON	CCEN	CCL1	CCH1	CCL2	CCH2	CCL3	CCH3
IEN1	IP1	SORELH		SPISCON		SPISSTAT	SPISDAT
P3	RSTREAS	PWMCON	REGXL	REGXH	REGXC	TICKDV	PWMDC2
IEN0	IP0	SORELL		CLKGATE	CLKLFCT	OPMCON	OSC_CTL
					RL		
P2	PWMDC0	PWMDC1	CLKCTRL	PWRDWN	WUCON	INTEXP	MEMCON
S0CON	S0BUF	-				POCON	P1CON
P1		DPS	PODIR	P1DIR	P2DIR		P2CON
TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	
P0	SP	DPL	DPH	DPL1	DPH1		PCON
	RFCON ACC ADCON PSW T2CON IRCON IEN1 P3 IEN0 P2 S0CON P1 TCON	RFCON MD0 ACC CFG_DFEN _P0 _P0 ADCON PWMCR0 PSW - T2CON - IRCON CCEN IEN1 IP1 P3 RSTREAS IEN0 IP0 P2 PWMDC0 S0CON S0BUF P1 TCON	RFCONMD0MD1ACCCFG_DFENCFG_DFEN_P0_P1ADCONPWMCR0PWMCON1PSW-T2IERT2CON-CRCLIEN1IP1S0RELHP3RSTREASPWMCONIEN0IP0S0RELLP2PWMDC0PWMDC1S0CONS0BUF-P1TMODTL0	RFCONMD0MD1MD2ACCCFG_DFENCFG_DFENCFG_DFENP0_P1P2ADCONPWMCR0PWMCON1USBPCON1PSW-T2IERT2SRT2CON-CRCLCRCHIRCONCCENCCL1CCH1IEN1IP1S0RELH	NNRFCONMD0MD1MD2MD3ACCCFG_DFENCFG_DFENCFG_DFENP0_P1P2ADCONPWMCR0PWMCON1USBPCON1POFCONPSW-T2IERT2SRPWMCR1T2CON-CRCLCRCHTL2IRCONCCENCCL1CCH1CCL2IRCONIP1S0RELHSPISCONP3RSTREASPWMCONREGXLREGXHIEN0IP0S0RELLCLKCTRLPWRDWNP2PWMDC0CLKCTRLPWRDWNS0CONS0BUF-CLP1DPSPODIRP1DIRTCONTMODTL0TL0	NNRFCONMD0MD1MD2MD3MD4ACCCFG_DFENCFG_DFENCFG_DFEN_SPIRCONP0P1P2ADCONPWMCR0PWMCON1USBPCON1POFCONCCEN1PSW-T2IERT2SRPWMCR1PWMDC3T2CON-CRCLCRCHTL2TH2IRCONCCENCCL1CCL1CCL2CCH2IEN1IP1S0RELHCCL3SPISCONREGXCP3RSTREASPWMCONREGXLREGXHREGXCIEN0IP0S0RELLCLKCTRLPWRDWNWUCONP2PWMDC0CLKCTRLPWRDWNWUCONS0CONS0BUFP1DPSPODIRPIDIRP2DIRTCONTMODTL0TL1TH0TH1	NNNRFCONMD0MD1MD2MD3MD4MD5ACCCFG_DFENCFG_DFENCFG_DFEN_SPIRCONSPIRSTAT_P0_P1P2DBGSEL0ADCONPWMCR0PWMCONUSBPCON1POFCONCCEN1DBGSEL0PSW-T2IERT2SRPWMCR1PWMDC3PWMDC4T2CON-CRCLCRCHTL2TH2USBCONIRCONCCENCCL1CCH1CCL2CCH2CCL3IEN1IP1S0RELHCCH4REGXHREGXCTICKDVIEN0IP0S0RELLCLKCTRLPWRDWRLOPMCONP2PWMDC0PWMDC1CLKCTRLPWRDWNWUCONINTEXPS0CONS0BUFOPOCNPOCNPOCNP1TMODTL0TL1TH0TH1CKCON

6 OTP memory

This section describes the operation of the embedded OTP (One Time Programmable) memory. The primary use for this memory is for read only program and data storage, but the MCU may also perform write operations, for instance to store pairing information persistently.


The OTP memory is configured and programmed through an external SPI slave interface. After programming, read and write operations from the external interfaces can be disabled for code protection.

6.1 Features

- 16 kB code memory
- Up to 2 kB can be mapped to data memory
- Direct SPI programmable
- Read and write protection

6.2 Block diagram

OTP is accessible by SPI slave during programming and MCU as selected by the PROG pin. A memory controller generates the necessary timing for accessing the OTP memory.

6.3 Functional description

The OTP block gives the MCU its code space for program storage and NV (not violation) memory space for storing of application data.

The NV memory can be accessed by the MCU through both normal code and data space operations.

6.3.1 Using the NV data memory

By default, the 2 kB NV memory is addressed by MCU as code memory in the range of 0x3800~0x3FFF. By setting the value of MEMCON, this NV memory can be addressed as XDATA memory in the range of 0x3800~0x3FFF. This memory is physically mapped (for SPI access) to OTP memory area 0x3800–0x3FFF.

6.3.2 OTP memory configuration

6.3.2.1 OTP read and write protection

The last byte of the OTP memory which is at address 0x3FFF is used to disable read and write to the OTP from the SPI interface. This byte can be accessed by MCU and SPI interface. When this byte is:

- 0x00: OTP block is accessible from external interfaces
- Other value: No read/ write of OTP block from external interfaces

				1		
Address	Bit	Name	Reset	SPI	SFR	Description
			value			
0xF8	7	xosc16m_r	0	R	R	1: xosc16m is ready, and begin to program OTP.
		dy				0: xosc16m is not ready, and wait xosc16m ready to program
						OTP.
	6	VRF_MO	0	RW	RW	Only used in program and verify operation
		DE				1: one cycle to read(50ns OTP)
				·		0: two cycle to read(50ns and 70ns OTP)
	5	WEN	0	RW	RW	OTP write enable latch.
						Enables OTP write operations from SPI or MCU.
	4	RDYN	1	R	R	OTP ready flag, active low. Before write date to OTP, you must
						check if OTP has been ready.
	3	prog_fail	0	R	R	1 indicate OTP program and verify process is failed
	2	RDISMB	0	R	R	OTP main block read and write protection enabled
						0:ExternalSPIhave full access (read and write) to the OTP.
						1: External SPI do not access to the OTP.
	1	TSTSTU	0	R	R	When 1, indicate the previous TEST (Blank Check or
						TESTDEC) is failed.
	0	TSTEND	0	R	R	When 1, indicate the previous TEST (Blank Check or
						TESTDEC) is finished.

6.3.2.2 Memory status register FSR

6.3.2.3 Memory Control Register – MEMCON

Address	Bit	Name	Reset	RW	Description
			value		
0xA7	7:2	-			Not used
	1:0	mc	2'b00	RW	0: no OTP is mapped in data space.
					1: the upper 512 bytes of OTP are mapped to data space.
					2: the upper 1K bytes of OTP are mapped to data space.
					3: the upper 2K bytes of OTP are mapped to data space.

The MEMCON register is used to control the number of OTP memory which can be mapped into the data space of MCU.

6.3.3 Brown-out

There is an on-chip power-fail brown-out detector, which ensures that any OTP memory program access will be ignored when the Power Fail (POF) signal. Both the microcontroller and the OTP memory write operation still function according to specification, and any write operation that was started will be completed. The Power-fail comparator is disabled after startup and can be enabled by setting bit 7 in POFCON.

If the supply voltage drops below $\sim 1.7V$, that is when the Brown-Out Reset (BOR) signal is active, the chip will be reset. If the power supply rises again before reaching the reset threshold, there will be no reset. In order to have an indication that shows this has happened, one will need to enable the Power Failure interrupt (POFIRQ).

6.3.4 OTP programming from the MCU

This section describes how you can write the OTP memory by using the MCU.

The clock frequency of the microcontroller must be 16 MHz during OTP write operations, that bit[7] in FSR register must be 1.

To allow write OTP operations the MCU must run the following sequence:

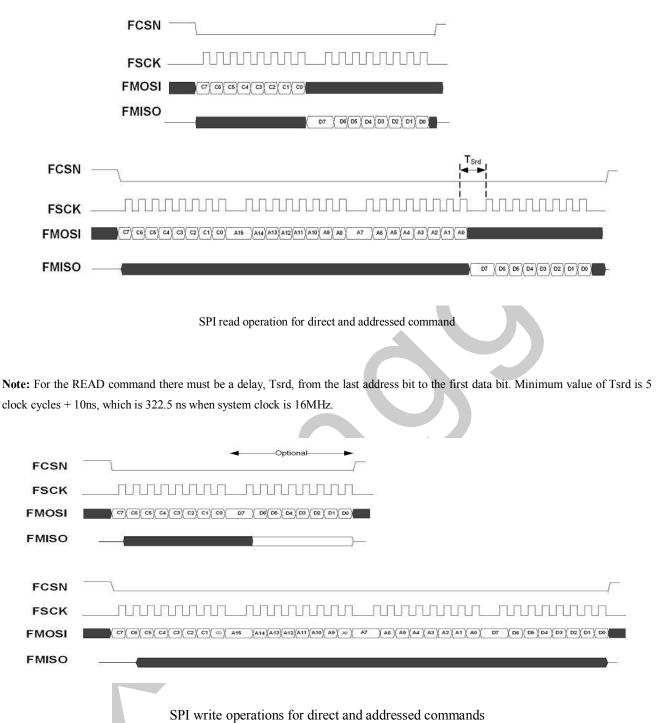
1. Set WEN (bit 5) in the FSR high to enable OTP writing access. The OTP is now open for writing from the MCU until WEN in FSR is set low again.

2. If write to code space is intended, set PMW (bit 4) in the PCON register high to enable program memory write mode.

3. Programming the OTP is done through normal memory write operations from the MCU. Bytes are written individually (there is no auto increment) to the OTP using the specific memory address.

When the programming code executes from the OTP, write operation is self-timed and the CPU stops until the operation is finished. If the programming code executes from the XDATA RAM the code must wait until the operation has finished. Do not set WEN low before the write operation is finished. Memory address is identical to the OTP address, see chapter 5 for memory mapping.

6.3.5 **OTP programming through SPI**


The on-chip OTP is designed to interface a standard SPI device for programming. The interface uses an 8-bit command register and a set of commands to program and configure the OTP memory. Before write and read OTP, you should check if the RDYN bit of the register FSR is low. If the RDYN bit of the register FSR isn't low, wait until it becomes low.

To program the memory the SPI slave interface is used. SPI slave connection to the OTP memory is activated by setting pin TES T = 1, P0.0 = 0,P0.1 = 0, P0.2 = 0,P0.3 = 0, while the reset pin is kept inactive. Then apply a pulse on the Prstn pin (PullPrstn pin low for a minimum of 0.2µs and return to high). The value of the pins should be kept for at least 10 us. Selected OTP GPIO pins are automatically configured as a SPI slave.

Command	Format	Address	Data	Command operation
WREN	0x06	NA	0	Set OTP write enable latch.
				Bit WEN in register FSR
WRDIS	0x04	NA	0	Reset OTP write enable latch.
				Bit WEN in register FSR
RDSR	0x05	NA	1	Read OTP Status Register (FSR)
WRSR	0x01	NA	1	Write OTP Status Register (FSR)
READ	0x03	2 bytes, first OTP	1–16384	Read data from OTP
		address to be read		
PROGRAM	0x02	2 bytes, first OTP	1-256	Write data to OTP
		address to be written		Note: WEN must be set.
RESET	0x80	NA	0	Reset the OTP control state
BLKCHK	0x8a	NA	0	Enable Blank Check test
TESTDEC	0x8b	NA	0	Enable TESTDEC test
SPRON	0x8c	NA	0	Enable spare bit write/read in OTP
SPROFF	0x8d	NA	0	Disable spare bit write/read in OTP

The signaling of the SPI interface is shown:

WREN / WRDIS OTP write enable/disable

SPI commands WRENand WRDISsets and resets the OTP write enable latch WEN in register FSR. This latch enables all write operations in the OTP blocks. The device will power-up in write disable state, and automatically go back to write disable state after each write SPI command (FCSN set high). Each write command over the SPI interface must therefore be preceded by a WRENcommand.Both WRENand WRDISare 1-byte SPI commands with no data.

RDSR / WRSR read/write OTP status register

SPI commands RDSRand WRSRread and write to the OTP status register FSR. Both commands are 1 and are followed by a data byte for the FSR content.

READ

SPI command READreads out the content of an addressed position in the OTP main block. It must be followed by 2 bytes denoting the start address of the read operation. If the FCSN line is kept active after the first data byte is read out the read command can be extended, the address is auto incremented and data continues to shift out.

A read back of the OTP main block content is only possible if the read disable bit RDISMBin the FSRregister is not set.

PROGRAM

SPI command PROGRAM, programs the content of the addressed position in the OTP main block. It must be followed by 2 bytes denoting the start address of the write operation. Before each write operation the write enable latch WEN must be enabled through the WREN SPI command. It is possible to write up to 256Byte in one PROGRAM command. The first byte can be at any address.

6.4 **Production Test**

In the following sections, the test patterns for the OTP Memory are described. The tests can be performed during wafer sort or final test or in-system/in-field depending on the test flow being used by the end user. Below each test is described.

6.4.1 Blank Check (Defective Bit Screen Test)

Blank Check enables an end user to verify that OTP memory is preloaded with "0" before actual programming. Blank Check must be performed before any other tests or any programming is performed on the OTP memory. Blank check must only be run once on OTP memory.

OTP memory technology depends on hard breakdown of gate oxide in standard logic CMOS process. It is important that integrity of gate oxide be checked before any tests or any programming is performed on OTP memory. This is done by reading every bit location at nominal VDD, nominal VDDIO and elevated VPP which ensures that defective bits caused due to defective gate oxides are screened out. If any of the bits do not read a "0", the chip is screened out.

To do the blank check test:

- Write BLKCHK command through SPI. Then the OTP controller block will do the blank check automatically.
- Send RDSR command to read FSR register, if Bit 0 of it is 1 which indicates the test is finished. Then check the value of Bit 1. If it is 0, the blank test is passed, otherwise it is failed.
- Write RESET command to reset SPI controller.

6.4.2 TESTDEC (Word-line and Bit-line Integrity Test)

TESTDEC enables an end user to verify the integrity of word-lines and bit-lines as well as screen out the gross defects in the peripheral logic. It is performed on an un-programmed unit and is valid only for un-programmed units.

The expected test pattern is a variation of a checkerboard pattern. If the expected test pattern is not observed, the chip is screened out. The expected test patterns are shown in Table below.

Density	Program width	Read width	TESTDEC pattern		
16Kb	1	8		A<3>=0(even)	A<3>=1(odd)
			A<9>=0(even)	8'h00	8'hFF
			A<9>=1(odd)	8'hFF	8'h00
16Kb	1	1		A<3>=0(even)	A<3>=1(odd)
			A<9>=0(even)	1'b0	1'b1
			A<9>=1(odd)	1'b1	1'b0

To do the TESTDEC test:

- Write TESTDEC command through SPI. Then the OTP controller block will do the TESTDEC test automatically.
- Send RDSR command to read FSR register, if Bit 0 of it is 1 which indicates the test is finished. Then check the value of Bit 1. If it is 0, the TESTDEC test is passed, otherwise it is failed.
- Write RESET command to reset SPI controller.

6.4.3 WRTEST (Pre-program Test)

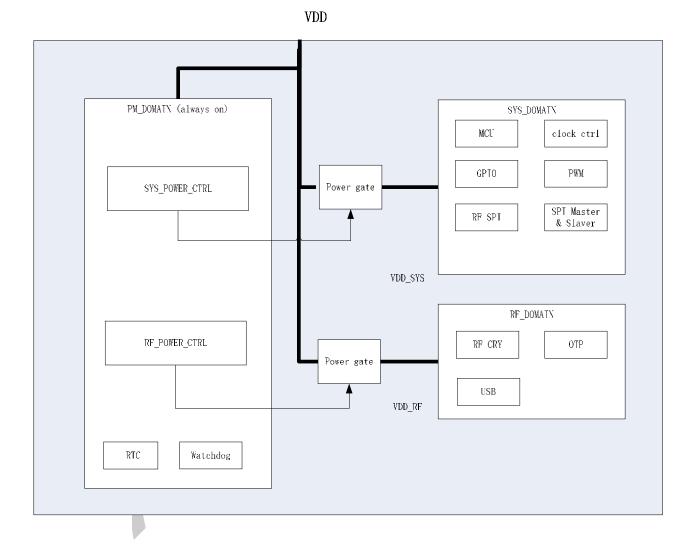
WRTEST enables an end user to screen out gross defects in programming circuitry before programming of the actual OTP memory array is done. This is enabled by the availability of two spare rows for programming.

This mode is especially useful if the end user is planning to program the OTP memory in the field or in-system since it gives an indication of program circuitry functionality before field-programming or in-system programming is done. If the user is planning to program the OTP memory array in the factory during wafer sort, then this test mode can be skipped.

Table 5 specifies the valid address ranges for the WRTEST mode during programming and during read for the various XPM memories in the 0.11um process node.

Program width	Read width	Address range during programming and during read for WRTEST mode	
1	8	If A[13]=0, spare row 0 is selected; if A[13]=1, spare row 1 is selected; A[8:3] selects one of	
		64 8-bit words; A[12:9] and A[2:0] are don't cares.	

To do the WRTEST test:


- Write SPRON command through SPI to enable the spare row for writing.
- Write RESET command to reset SPI controller.
- Write WREN command to enable OTP writing.
- Write 64 byte to OTP start of address 0x0000 in spare row 0, and then wait writing process is finished by reading the OTP RDYN bit of FSR.
- Write another 64 byte to OTP start of address 0x2000 in spare row 1, and then wait writing process is finished by reading the OTP RDYN bit of FSR.
- Read the previous 128 byte data by sending READ command, if the readout values is the same as the data written into, then the WRTEST is passed.
- Write SPROFF command through SPI to disable the spare row.
- Write RESET command to reset SPI controller.

7 Power management

7.1 Power domain

There are four power domains in the chip.

PM_DOMAIN is always on when the chip is power up. When the chip is in deep sleep mode, all the other two domains include SYS_DOMAIN and RF_DOMAIN are powered down.

When the chip is in register retention mode, SYS_DOMAIN is kept power up while only RF_DOMAIN is powered down.

When the chip is in standby or active mode, all the three power domains are keep power up.

7.2 Mode of operation

After the chip is reset or powered on it enters active mode and the functional behavior is controlled by software. To enter one of the power saving modes, the PWRDWN register must be written with selected mode (as data). To re-enter the active mode a wakeup source (valid for given power down mode) has to be activated

Mode	Brief description
Deep sleep	Current: 0.2uA
timer off	
	Powered function:
	• pins inclusive wakeup filter
	Wakeup source(s):
	From pin
	Comment:
	Wakeup from pin will in this mode lead to a system reset (after wakeup, program execution will
	start from the reset vector)
Deep sleep	Current: 3uA
timer on	
	Powered function:
	As for Deep Sleep timer off
	• RCOSC32K
	RTC clocked on 32 KHz clock
	Wakeup source(s):
	From pin and wakeup TICK from RTC timer
	Comment:
	Wakeup from pin and from RTC timerwill in this mode lead to a system reset (after wakeup,
	program execution will start from the reset vector)

.

KT8P01

Register retention,	Current: 10uA
timer off	
	Powered function:
	All registers
	• data memory (SRAM)
	Optional: XOSC16M
	Wakeup source(s):
	From pin
	Comment:
	Wakeup does not lead to system reset (after wakeup, program execution will resume from the
	current instruction).
Register retention,	Current: 12uA
timer on	
	Powered function:
	In addition to Register retention, timers off:
	• RCOSC32K
	RTC and watchdog clocked on 32 KHz clock
	Wakeup source(s):
	From pin, wakeup TICK from timer
	Comment:
	Wakeup does not lead to system reset (after wakeup, program execution will resume from the
	current instruction).
Standby	Current:
	Powered function:
	In addition to Register retention:
	Program memory and Data memory
	• XOSC16M
	Wakeup source(s):
	in addition to Register retention:
v	• The interrupt sources RFIRQ,WU, USBWU and USBIRQ.
	Comment:
	Processor in standby, that is, clock stopped. I/O functions may be active.

.

KT8P01

Active	Current:
	Powered function:
	Everything powered
	Wakeup source(s):
	Comment:
	Processor active and running

7.3 Functional description

7.3.1 Power down control – PWRDWN

The PWRDWN register is used by the MCU to set the system to a power saving mode:

Address	Bit	Reset	R/W	Description
		value		
0xA4	7	1'b0	R	Indicates a wakeup from pin if set
				This bit is cleared by entering a power down mode
	6	1'b0	R	Indicates a wakeup from TICK if set
				This bit is cleared by entering a power down mode
	5	1'b0	R	0: indicates WUIRQ is a wakeup interrupt, if IEN1[5]=1(wakeup from
				standby mode to active mode)
				1: indicates WUIRQ is a RTC timer interrupt, if IEN1[5]=1(active mode)
	4			Reserved
	3	1'b0	RW	1:enable USB
				0:disable USB(default)

\bigvee			1	KT8P0
	2:0	3'b0	W	Set system to power down if different from 000
				001: set system to DeepSleep
				010: reserved
				011: reserved
				100: set system to Register retention
				101: reserved
				110: reserved
				111: set system to standby (stop MCU clock)
			R	Shows previous power down mode
				000: Power off
				001: DeepSleep
				010: reserved
				011: reserved
				100: Register retention
				101: reserved
				110: reserved
				111: standby

7.3.2 Power Fail comparator and Brown-out reset-POFCON

The Power-Fail (POF) comparator provides the MCU with an early warning of impending power failure. When enabled, it will be powered up when the system is in active or standby mode.

The Brown-Out Reset (BOR) generator puts the system in reset state if the supply voltage drops below theBOR threshold. It is enabled when the system is in active orstandby mode.

Address	Bit	Name	Reset	RW	Description
			value		
0xDC	7	pof_en	1'b0	RW	POF enable, high active
	6:4	pof_thr	3'b000	RW	If power is lower than pofthreshold, pof_warn will be active
					000: 1.0V
					001: 1.2V
					010: 1.4V
					011: 1.8V
					100: 2.0V
					101: 2.2V
					110: 2.4V
					111: 2.7V
	3	pof_warn	1'b1	R	power fail warning, low active; output 1 when pof disable

2:1 bor_thr 2'b00 RW If power is lower than borthreshold, system reset will be active. 00: the threshold is 1.7V 01: the threshold is 1.75V 10: the threshold is 1.75V 10: the threshold is 1.8V 00: -- 1'b0 -- Not used

7.3.3 Reset result – RSTREAS

There are four reset sources that initiate the same reset/ start-up sequence. These are:

- Reset from the on chip reset generator
- Reset from pin
- Reset generated from the on chip watchdog function

The RSTREAS register stores the reason for the last reset, all cleared indicates that the last reset was from the on-chip reset generator. A write operation to the register will clear all bits. Unless cleared after read (by on-chip reset or by a write operation), RSTREAS will be cumulative.

Address	Bit	Reset	R/W	Description				
		value						
	7		-	Not used				
0xB1	6		W	Writing 1 to reset PWM module				
	5		W	Writing 1 to reset RF SPI master module				
	4		W	Writing 1 to reset SPI slaver module				
	3		W	Writing 1 to reset SPI master module				
	2		W	Writing 1 to reset 32k osc calibration module				
	1:0	2'b0	R	00: On-chip reset generator				
				01: RST pin				
				10: Watchdog				

7.3.4 Wakeup configuration register – WUCON

The following wakeup sources are available in STANDBY power down mode.

Address	Bit	Reset	R/W	Description
		value		
0xA5	7:6	2'b0	RW	00: Enable wakeup on RFIRQ if interrupt is enabled (IEN1.1=1)
				01: Reserved, not used
				10: Enable wakeup on RFIRQ
				11: Ignore RFIRQ

5:4	2'b0	RW	00: Enable wakeup on WU, if IEN1[5]=1
			01: Reserved, not used
			10: Enable wakeup on WU, regardless of IEN1[5]
			11: Ignore WU
3:2	2'b0	RW	00: Enable wakeup on USBIRQ, if IEN1[4]=1
			01: Reserved, not used
			10: Enable wakeup on USBIRQ, regardless of EN1 [4]
			11: Ignore USBIRQ
1:0	2'b0	RW	00: Enable wakeup on USBWU, if IEN1[3]=1
			01: Reserved, not used
			10: Enable wakeup on USBWU, regardless of IEN1[3]
			11: Ignore USBWU

7.3.5 Mode Control – OPMCON

It is used to control the delay time which is required in power up sequence. Default: 0xC5

Address	Bit	Reset	R/W	Description				
		value						
0xAE	7:6	2'b11	RW	The time is requited for 3.3V charge pump power up before system start working.				
				2'b00: 500us				
				2'b01: 1ms				
				2'b10: 2ms				
				2'b11: 3ms				
	5:4			Reserved				
	3:2	2'b01	RW	The time is required for waiting after system power domain power up				
				2'b00 : not waiting				
				2'b01: 80 16M clock cycles				
				2'b10: 160 16M clock cycles				
				2'b11: 255 16M clock cycle				
	1:0	2'b01	RW	The time is required for waiting after RF power domain power up				
				2'b00 : not waiting				
				2'b01: 80 16M clock cycles				
				2'b10: 160 16M clock cycles				
				2'b11: 255 16M clock cycle				

7.3.6 Charge pump and 2v LDO for sensor register–CPLDOCON

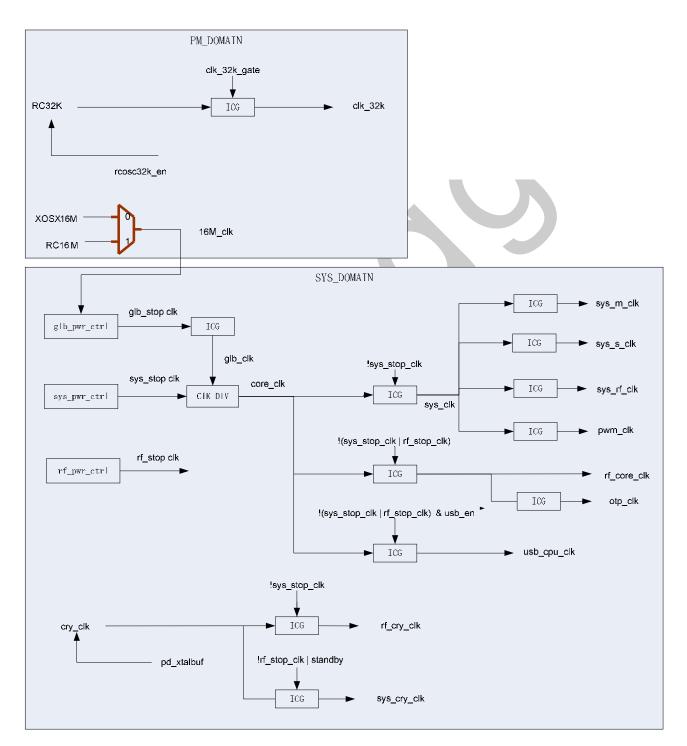
Address	Bit	Reset value	R/W	Description
0xF4	7:1	7'h00		Reserved

RW 2v ldo power down

7.4 **Power consumption**

Condition: temperature =+25

.


Module	digital	analog
Deep sleep (RTC off)	0.5uA	0.8uA
Deep sleep (RTC on)	0.8uA	2.8uA
Register retention (RTC off)	10.0uA	0.8uA
Register retention (RTC on with RC 32K)	10.3uA	2.8uA
Standby (RTC on with 1M clock from osc16M)	205uA	360uA

.

8 Clock and Reset management

8.1 Clock Block diagram

8.2 Clock control

The source and frequency of the clock to the microcontroller system is controlled by the CLKCTRL register. Because the read data delay of OTP memory is maximum 70ns, when the microcontroller system clock is 16MHz, the program memory wait cycle defined in register CKCON bit [6:4] should be at least 1, otherwise the system will be failed.

Address	Bit	Reset	R/W	Description			
		value					
0xA3	7:5	3'b0	RW	Clock frequency to debounce block:			
				000: 16 MHz			
				001: 8 MHz			
				010: 4 MHz			
				011: 2 MHz			
				100: 1 MHz			
				01: 500 kHz			
				110: 250 kHz			
				111: 125 kHz			
	4		R	When 1 indicates the XOSC 16M clock is enable			
	3	1'b0	RW	1: Enable wakeup and interrupt (X16IRQ) from XOSC16M active			
				0: Disable wakeup and interrupt from XOSC16M active			
	2:0	3'b0	RW	Clock frequency to microcontroller system:			
				000: 16 MHz			
				001: 8 MHz			
				010: 4 MHz			
				011: 2 MHz			
				100: 1 MHz			
				101: 500 kHz			
				110: 250 kHz			
				111: 125 kHz			

Each module can be clock gated by CLKGATE register

.

Address	Bit	Reset	R/W	Description
		value		
0xAC	7	1'b0	RW	1: Keep LDO on in sleep mode
				0: Gate LDO in sleep mode(default)
				Note: in standby mode this bit must be set as 1
	6	1'b0	RW	1: Keep XOSC16M on in sleep mode
				0: Gate XOSC16Min sleepmode(default)
				Note: in standby mode this bit is ignored, andXOSC16M is always on.
	5	1'b0	RW	1 enable debounce block
	4	1'b1	RW	Clock enable for SPI master

.

3	1'b1	RW	Clock enable for SPI slaver
2	1'b1	RW	Clock enable for RF SPI
1	1'b1	RW	Clock enable for 16MHz clock which used in PWM and OSC calibration block
0	1'b1	RW	Clock enable for OTP controller, program still can be read by MCU even when OTP
			clock is gated

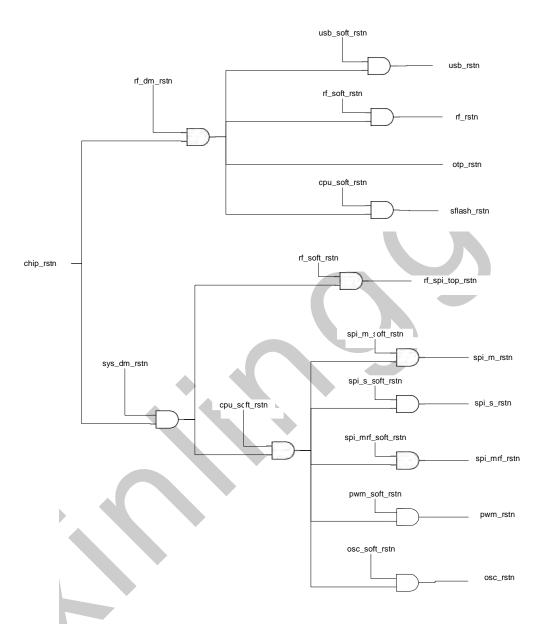
8.3 32K OSC clock calibration

The source of the 32 kHz clock is controlled by the CLKLFCTRL register. 32k OSC clock calibration must be done when the frequency of system clock is 16MHz.

Address	Bit	Reset	R/W	Description
		value		
0xAD	7		R	Read CLKLF (phase).
	6:5	2'b00	RW	Source for CLKLF:
				00: RCOSC32K
				01:32K generated from XOSC16M when active, off otherwise ^a
				10:1M generated from XOSC16M when active, off otherwise ^a
				11:4M generated from XOSC16M when active, off otherwise ^a
	4		R	When 1 indicates osc32kcalibration is done
	3	1'b0	RW	Write 1 to start ose32k calibration.
	2		R	After changing the source of the CLKLF by setting bit[6:5], the changing process is
				finished when read 1 from this bit.
	1	1'b1	RW	Internal 32 kHz clock gating is enable when 1.
	0	1'b0	RW	Enable the 32 kHz clock

a: In default XOSC16M will be stopped in Deep Sleep and Register Retention mode. If the CLKLF is required to be sourced from XOSC16M in Register Retention mode, bit 6 of the CLKGATE register should be kept as 1.

The status of the OSC calibration is controlled by OSC_CTL register:


Address	Bit	Reset	R/W	Description			
		value					
0xAF	7:3	5'b0	RW	osc32k control manual value.			
	2	1'b0	RW	1: osc32k_ctrl come fromregister;			
				0: osc32k_ctrl come from FSM			
	1	1'b0	RW	osc32k_cal_en manual value.			
	0	1'b0	RW	1: osc32k_cal_en come from register;0:osc32k_cal_en come from FSM			

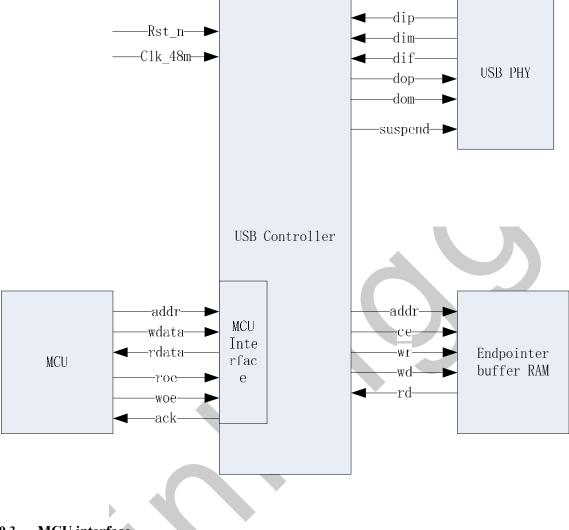
.

8.4 Reset Control

The block diagram for reset controller is:

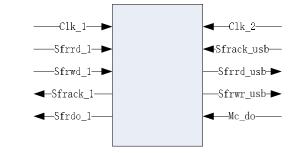
The chip reset is acombination of power reset (porb), pin reset (prstn) and watch dog reset. Signal rf_dm_rstnandsys_dm_rstn are controlled by the power controller. Usb_soft_rstn is USB software reset controlled by the USB internal register (USBCON). Rf_soft_rstn is RF software reset controlled by RF internal register. Cpu_soft_rstn is a system software reset controlled by register SRST. Other control signals are software reset for other peripherals controlled by register RSTREA.

9 USB Configuration


The USB device controller is compatible with USB 2.0 Full-speed(12 Mbps) function.

9.1 Feature

- Conforms to 1.1 and 2.0 revision of the USB specification.
- Support 8 endpoints (include endpoint 0).
- Each endpoint have 16 bytes IN buffer and 16 bytes OUT buffer
- Serial Interface Engine
 - Supports full speed devices
 - NRZI decoding/encoding
 - Bit stuffing/stripping
 - CRC checking/generation
 - On-chip pull-up resistor with software controlled disconnect
- Automatic data retry mechanism
- Data toggle synchronization mechanism
- Suspend and resume power management functions
- Remote Wakeup function


9.2 Block diagram

9.3 MCU interface

.

The USB controller host interface is work at 12M. The MCU clock is asynchronous to the USB host interface so there is a MCU interface to transfer the MCU cycle to the USB.

9.4 Wakeup/suspend control

If the USB has not find activity on the USB for 3ms, it will generate a Suspend interrupt (if enabled). It is up to the software to decide what, if anything, to disable when the USB is in Suspend mode. The USB 48M PLL will stop. When USB detect Resume signaling (by monitoring the DIM and DIP signals) it will enable the 48M PLL and generate Resume interrupt. The en_48M will manual turn the 48M PLL on.

If the USB is in Suspend mode and the software wants to initiate a remote wakeup, it should write to the sw_wu to enable the 48M PLL. It will take 100us to let the PLL stable then software need to set the Resume bit (D2) in Power register to 1. The software should leave this bit set for approximately 10ms (minimum of 2ms, a maximum of 15ms) then reset it to 0. By thistime the hub should have taken over driving Resume signaling on the USB. The sw_wu must be clear before USB goes into the suspend mode otherwise the 48M PLL will not stop.

Note: No Resume interrupt will be generated when the software initiates a remote wakeup.

9.5 SFR register

9.5.1 USB Control register-USBCON

<u>USBCON(RW)</u>

0xCE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
Sw_rst	Sw_wu	Pll_48m_rstn	Sw_mux	En_48m		Pll_48m_icp	
0	0	1	0	0		3'b011	

Bit	Value	Symbol	Description
7	0	Sw_rst	Software reset
			1: assert reset
			0: de-assert reset
6	0	Sw_wu	1: wakeup USB must be cleared before setting USB suspend in Enable Suspend in POWER
			(0xc001).
5	1	Pll_48m_rstn	Output to analogue
4	0	Sw_mux	USB PIN debug select
			1: DP, DM uses P1.5 and P1.4
			0: DP, DM use normal PIN
3	0	En_48m	Manual enable the 48m clock
			1: enable the 48m clock
			0: FSM control the 48m clock
2:0	3'h3	Pll_48m_icp	Output to analogue

9.5.2 USBPCON registers —USBPCON

<u>USBPCON (RW)</u>

0xCF

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
		Usb_suspend	usb_ndie				
		1'b0	1'b1				
		R	RW				

Description of Word

Bit	Value	Symbol	Description				
7:2			Not used				
1	1'b0	usb_suspend	usb suspend				
			1: usb in suspend mode				
			0: usb not in suspend mode				
0	1'b1	usb_ndie	1: usb input disable				
			0: usb input enable				

9.5.3 USBPCON registers —USBPCON1

<u>USBPCON1 (RW)</u>

0xDB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
usb	_drv	usb_p_pull_do	usb_p_pull_up	usb_p_pull_up	usb_m_pull_do	usb_m_pull_u	usb_pull_up_l
		wn		_lo	wn	р	о
2'b10		1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
R	W	RW	RW	RW	RW	RW	RW

Bit	Value	Symbol	Description
7:6	2'b10	usb_drv	usb output driver strength control
5	1'b0	usb_p_pull_down	1: usb D+ pull down enable
			0: usb D+ pull down disable
4	1'b0	usb_p_pull_up	1: usb D+ pull up enable
			0: usb D+ pull up disable
3	1'b0	usb_p_pull_up_lo	1: usb D+ low resistor pull up enable
			0: usb D+ low resistor pull up disable
2	1'b0	usb_m_pull_down	1: usb D- pull down enable
			0: usb D- pull downdisable

1	1'b0	usb_m_pull_up	1: usb D- pull up enable
			0: usb D- pull up disable
0	1'b0	usb_pull_up_lo	1: usb D- low resistor pull up enable
			0: usb D- low resistor pull up disable

9.6 USB Registers

Note: In the following bit descriptions:

- > 'R' means that the bit is read only
- > 'RW' means that the bit can be both read and written
- > 'Set' means that the bit can only be written to set it
- > 'R/Set' means that the bit can be read or set but it can't be cleared
- > 'Clear' means that the bit can only be written to clear it
- > 'R/Clear' means that the bit can be read or cleared but it can't be set
- > 'Self-clearing' means the bit will be cleared automatically when the associated action has been executed.

9.6.1 Function address register- FADDR

FAddr is an 8-bit register that should be written with the function's 7-bit address. It is then used for decoding the function addressin subsequent token packets.

FADDR (RW)

0xC000

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0	
Update		Function Address						
1'b0		7'b000000						
R				RW				

Description of Word

Bit	Value	Symbol	Description
7	1'b0	Update	Set when FAddr is written. Cleared when the new address takes effect (at the end of the
			currenttransfer).
6:0	7'h0	FAddr	The function address.

9.6.2 Power management register-POWER

POWER (RW)

0xC001

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
ISO Update				Reset	Resume	SuspendMode	EnableSuspend

1'b0	3'b000	1'b0	1'b0	1'b0	1'b0
RW	R	R	RW	R	RW

Description of Word

Bit	Value	Symbol	Description
7	1'b0	ISO Update	When set by the CPU the MUSBFSFC will wait for an SOF token from the time InPktRdy
			is setbefore sending the packet. If an IN token is received before an SOF token, then a zero
			length datapacket will be sent. This bit is only used by endpoints performing Isochronous
			transfers.
6:4	3'b000		Unused, always return zero.
3	1'b0	Reset	This read only bit is set while Reset signaling is present on the bus.
2	1'b0	Resume	Set by the CPU to generate Resume signaling when the function is in Suspend mode. The
			CPUshould clear this bit after 10ms (a maximum of 15ms) to end Resume signaling.
1	1'b0	SuspendMode	Set by the USB when Suspend mode is entered. Cleared when the CPU reads the interrupt
			register, or sets the Resume bit of this register.
0	1'b0	EnableSuspend	Set by the CPU to enable entry into Suspend mode when Suspend signaling is received on
			the bus.

9.6.3 Interrupt register for Endpoint 0 plus IN Endpoints 1 to 7-INTRIN1

IntrIn1 is an 8-bit read-only register that indicates which of the interrupts for IN Endpoints 1–7 are currently active. It also indicates whether the Endpoint 0 interrupt is currently active. Note: All active interrupts will be cleared when this register is read.

INTRIN1 (R)

0xC002

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0
1'b0	1'b0						
R	R	R	R	R	R	R	R

Bit	Value	Symbol	Description
7	1'b0	EP7	IN Endpoint 7 interrupt.
6	1'b0	EP6	IN Endpoint 6 interrupt.
5	1'b0	EP5	IN Endpoint 5 interrupt.
4	1'b0	EP4	IN Endpoint 4 interrupt.
3	1'b0	EP3	IN Endpoint 3 interrupt.
2	1'b0	EP2	IN Endpoint 2 interrupt.
1	1'b0	EP1	IN Endpoint 1 interrupt.
0	1'b0	EP0	IN Endpoint 0 interrupt.

9.6.4 Interrupt register for IN Endpoints 8 to 15-INTRIN2

IntrIn2 is an 8-bit read-only register that indicates which of the interrupts for IN Endpoints 8–15 are currently active. This register will only be present if the MUSBFSFC is configured for more than 7 IN endpoints.Note: All active interrupts will be cleared when this register is read.

<u>INTRIN2 (R)</u>

0xC003

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8
1'b0	1'b0						
R	R	R	R	R	R	R	R

Description of Word

Bit	Value	Symbol	Description
7	1'b0	EP15	IN Endpoint 14 interrupt.
6	1'b0	EP14	IN Endpoint 13 interrupt.
5	1'b0	EP13	IN Endpoint 13 interrupt.
4	1'b0	EP12	IN Endpoint 12 interrupt.
3	1'b0	EP11	IN Endpoint 11 interrupt.
2	1'b0	EP10	IN Endpoint 10 interrupt.
1	1'b0	EP9	IN Endpoint 9 interrupt.
0	1'b0	EP8	IN Endpoint 8 interrupt.

9.6.5 Interrupt register for OUT Endpoints 1 to 7-INTROUT1

IntrOut1 is an 8-bit read-only register that indicates which of the interrupts for OUT Endpoints 1–7 are currently active.Note:All active interrupts will be cleared when this register is read.

INTROUT1 (R)

0xC004

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0
1'b0	1'b0						
R	R	R	R	R	R	R	R

Bit	Value	Symbol	Description			
7	1'b0	EP7	OUT Endpoint 7 interrupt.			

6	1'b0	EP6	OUT Endpoint 6 interrupt.			
5	1'b0	EP5	OUT Endpoint 5 interrupt.			
4	1'b0	EP4	UT Endpoint 4 interrupt.			
3	1'b0	EP3	DUT Endpoint 3 interrupt.			
2	1'b0	EP2	OUT Endpoint 2 interrupt.			
1	1'b0	EP1	OUT Endpoint 1 interrupt.			
0	1'b0		Unused, always returns 0			

9.6.6 Interrupt register for OUT Endpoints 8 to 15-INTROUT2

IntrOut2 is an 8-bit read-only register that indicates which of the interrupts for OUT Endpoints 8–15 are currently active. This register will only be present if the MUSBFSFC is configured for more than 7 OUT endpoints. Note: All active interrupts will be cleared when this register is read.

<u>INTROUT2 (R)</u>			0xC005			Л	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
R	R	R	R	R	R	R	R

Description of Word

Bit	Value	Symbol	Description
7	1'b0	EP15	OUT Endpoint 15 interrupt.
6	1'b0	EP14	OUT Endpoint 14 interrupt.
5	1'b0	EP13	OUT Endpoint 13 interrupt.
4	1'b0	EP12	OUT Endpoint 12 interrupt.
3	1'b0	EP11	OUT Endpoint 11 interrupt.
2	1'b0	EP10	OUT Endpoint 10 interrupt.
1	1'b0	EP9	OUT Endpoint 9 interrupt.
0	1'b0	EP8	OUT Endpoint 8 interrupt.

9.6.7 Interrupt register for common USB interrupts-INTRUSB

INTRUSB is an 8-bit read-only register that indicates which USB interrupts are currently active. All active interrupts will be cleared when this register is read.

<u>INTRUSB (R)</u>

.

0xC006

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	-			SOF	Reset	Resume	Suspend

4'b0000	1'b0	1'b0	1'b0	1'b0
R	R	R	R	R

Description of Word

Bit	Value	Symbol	Description
7:4	4'b0000		Unused, always return 0.
3	1'b0	SOF	Set at the start of each frame.
2	1'b0	Reset	Set when Reset signaling is detected on the bus.
1	1'b0	Resume	Set when Resume signaling is detected on the bus while the MUSBFSFC is in Suspend mode.
0	1'b0	Suspend	Set when Suspend signaling is detected on the bus.

9.6.8 Interrupt enable register for INTRIN1-INTRIN1E

IntrIn1E is 8-bit registers that provide interrupt enable bits for the interrupts in IntrIn1.On reset, the bits corresponding to Endpoint 0 and the IN endpoints included in the design are set to 1, while the remaining bits are set to 0.

INTRIN1E (RW)

0xC007

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0
1'b0	1'b0	1'b0	1'b0	1'b1	1'b1	1'b1	1'b1
RW	RW						

Bit	Value	Symbol	Description
7	1'b0	EP7	enable bit for the IN Endpoint 7 interrupt
			1:enable
			0:disable
6	1'b0	EP6	enable bit for the IN Endpoint 6 interrupt
			1:enable
			0:disable
5	1'b0	EP5	enable bit for the IN Endpoint 5 interrupt
			1:enable
			0:disable
4	1'b0	EP4	enable bit for the IN Endpoint 4 interrupt
			1:enable
			0:disable

3	1'b1	EP3	enable bit for the IN Endpoint 3 interrupt
			1:enable
			0:disable
2	1'b1	EP2	enable bit for the IN Endpoint 2 interrupt
			1:enable
			0:disable
1	1'b1	EP1	enable bit for the IN Endpoint 1 interrupt
			1:enable
			0:disable
0	1'b1	EP0	enable bit for the IN Endpoint 0 interrupt
			1:enable
			0:disable

9.6.9 Interrupt enable register for INTRIN1-INTRIN2E

IntrIn2E is 8-bit registers that provide interrupt enable bits for the interrupts in IntrIn2.On reset, the bits corresponding to Endpoint 0 and the IN endpoints included in the design are set to 1, while the remaining bits are set to 0.

INTRIN2E (RW)

0xC008

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP15	EP14	EP13	EP12	EP11	EP10	EP8	EP8
1'b0	1'b0						
RW	RW						

Bit	Value	Symbol	Description
7	1'b0	EP15	enable bit for the IN Endpoint 15 interrupt
			1:enable
			0:disable
6	1'b0	EP14	enable bit for the IN Endpoint 14 interrupt
			1:enable
			0:disable
5	1'b0	EP13	enable bit for the IN Endpoint 13 interrupt
			1:enable
			0:disable
4	1'b0	EP12	enable bit for the IN Endpoint 12 interrupt
			1:enable
			0:disable

3	1'b0	EP11	enable bit for the IN Endpoint 11 interrupt
			1:enable
			0:disable
2	1'b0	EP10	enable bit for the IN Endpoint 10 interrupt
			1:enable
			0:disable
1	1'b0	EP9	enable bit for the IN Endpoint 9 interrupt
			1:enable
			0:disable
0	1'b0	EP8	enable bit for the IN Endpoint 8 interrupt
			1:enable
			0:disable

9.6.10 Interrupt enable register for INTROUT1-INTROUT1E

IntrOut1Eis 8-bit register that provides interrupt enable bits for the interrupts in IntrOut1. On reset, the bits corresponding to the OUT endpoints included in the design are set to 1, while the remaining bitsare set to 0.

INTROUT1E (R)

0xC009

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP7	EP6	EP5	EP4	EP3	EP2	EP1	
1'b0	1'b0	1'b0	1'b0	1'b1	1'b1	1'b1	1'b0
RW	R						

Bit	Value	Symbol	Description
7	1'b0	EP7	enable bit for the OUT Endpoint 7 interrupt
			1:enable
			0:disable
6	1'b0	EP6	enable bit for the OUT Endpoint 6 interrupt
			1:enable
			0:disable
5	1'b0	EP5	enable bit for the OUT Endpoint 5 interrupt
			1:enable
			0:disable
4	1'b0	EP4	enable bit for the OUT Endpoint 4 interrupt
			1:enable
			0:disable

3	1'b1	EP3	enable bit for the OUT Endpoint 3 interrupt
			1:enable
			0:disable
2	1'b1	EP2	enable bit for the OUT Endpoint 2 interrupt
			1:enable
			0:disable
1	1'b1	EP1	enable bit for the OUT Endpoint 1 interrupt
			1:enable
			0:disable
0	1'b0		Unused, always returns 0

9.6.11 Interrupt enable register for INTROUT2-INTROUT2E

IntrOut2Eis 8-bit register that provides interrupt enable bits for the interrupts in IntrOut2. On reset, the bits corresponding to the OUT endpoints included in the design are set to 1, while the remaining bits are set to 0.

INTROUT2E (RW)

0xC00A

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
EP15	EP14	EP13	EP12	EP11	EP10	EP9	EP8
1'b0	1'b0						
RW	RW						

Description of Word

.

Bit	Value	Symbol	Description
7	1'b0	EP15	enable bit for the OUT Endpoint 15 interrupt
			1:enable
			0:disable
6	1'b0	EP14	enable bit for the OUT Endpoint 14 interrupt
			1:enable
			0:disable
5	1'b0	EP13	enable bit for the OUT Endpoint 13 interrupt
			1:enable
			0:disable
4	1'b0	EP12	enable bit for the OUT Endpoint 12 interrupt
			1:enable
			0:disable
3	1'b0	EP11	enable bit for the OUT Endpoint 11 interrupt
			1:enable
			0:disable

2	1'b0	EP10	enable bit for the OUT Endpoint 10 interrupt
			1:enable
			0:disable
1	1'b0	EP9	enable bit for the OUT Endpoint 9 interrupt
			1:enable
			0:disable
0	1'b0	EP8	enable bit for the OUT Endpoint 8 interrupt
			1:enable
			0:disable

9.6.12 Interrupt enable register for INTRUSB-INTRUSBE

INTRUSBE is an 8-bit register that provides interrupt enable bits for each of the interrupts in INTRUSB.

٠.

<u>INTRUSBE (R)</u>			0xC00B			Л	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	-			SOF	Reset	Resume	Suspend
4'b0000				1'b0	1'b1	1'b1	1'b0
R				RW	RW	RW	RW

Description of Word

.

Bit	Value	Symbol	Description				
7:4	4'b0000		Unused, always return 0.				
3	1'b0	SOF	enable bit for the interrupt				
			l:enable				
			0:disable				
2	1'b1	Reset	enable bit for the interrupt				
			lienable				
			0:disable				
1	1'b1	Resume	enable bit for the interrupt				
			1:enable				
			0:disable				
0	1'b0	Suspend	enable bit for the interrupt				
			1:enable				
			0:disable				

9.6.13 Frame number bits 0 to 7-FRAME1

Frame1 is an 8-bit read-only register that holds the lower 8 bits of the last received frame number.

FRAME1 (R)

0xC00C

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
Frame1									
8'h00									
R									

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	Frame1	Lower 8 bits of Frame Number.

9.6.14 Frame number bits 8 to 10-FRAME2

Frame2 is a 3-bit read-only register that holds the upper 3 bits of the last received frame number.

<u>FRAME2 (R)</u>

Bit 2	Bit 1	Bit 0
	Frame2	
	3'b000	
	р	

0xC00D

Description of Word

Bit	Value	Symbol	Description
2:0	3'b000	Frame2	Upper 3 bits of Frame Number.

9.6.15 Index register for selecting the endpoint status and control registers-INDEX

Index is a 4-bit register that determines which endpoint control/status registers are accessed at addresses 0xC010h to 0xC017h.Each IN endpoint and each OUT endpoint have their own set of control/status registers. Only one set of IN control/status andone set of OUT control/status registers appear in the memory map at any one time. Before accessing an endpoint'scontrol/status registers, the endpoint number should be written to the Index register to ensure that the correct control/statusregisters appear in the memory map.

INDEX (RW)

0xC00E

Bit 3	Bit 2	Bit 1	Bit 0				
Index							
4'b0000							
RW							

Description of Word

Bit	Value	Symbol	Description
3:0	4'b0000	Index	Selected Endpoint.

9.6.16 Control Status register for Endpoint 0-CSR0

CSR0 is an 8-bit register that provides control and status bits for Endpoint 0.CSR0 is used for all control/status of Endpoint0.

<u>CSR0</u>

0xC011

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
Serviced	Serviced	SendStall	SendStall	DataEnd	SentStall	InPktRdy	OutPktRdy
SetupEnd	OutPktRdy	(self-clearing)	(self-clearing)	(self-clearing)		(self-clearing)	
(self-clearing)	(self-clearing)						
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
Set	Set	Set	R	Set	R/Clear	R/Set	R
	•	•	•				

Description of Word

.

Descriț	Description of Word								
Bit	Value	Symbol	Description						
7	1'b0	ServicedSetupEnd	The CPU writes a 1 to this bit to clear the SetupEnd bit. It is cleared automatically.						
6	1'b0	ServicedOutPktRdy	The CPU writes a 1 to this bit to clear the OutPktRdy bit. It is cleared automatically.						
5	1'b0	SendStall	The CPU writes a 1 to this bit to terminate the current transaction. The S						
			handshakewill be transmitted and then this bit will be cleared automatically.						
4	1'b0	SendStall	This bit will be set when a control transaction ends before the DataEnd bit has been set.						
			An interrupt will be generated and the FIFO flushed at this time. The bit is cleared by the						
			CPU writing a 1 to the ServicedSetupEnd bit.						
3	1'b0	DataEnd	The CPU sets this bit:						
			1. When setting InPktRdy for the last data packet.						
			2. When clearing OutPktRdy after unloading the last data packet.						
			3. When setting InPktRdy for a zero length data packet.						
			It is cleared automatically.						
2	1'b0	SentStall	This bit is set when a STALL handshake is transmitted. The CPU should clear this bit.						
1	1'b0	InPktRdy	The CPU sets this bit after loading a data packet into the FIFO. It is cleared						
			automaticallywhen the data packet has been transmitted. An interrupt is generated when						
			the bit iscleared.						
0	1'b0	OutPktRdy	This bit is set when a data packet has been received. An interrupt is generated when this						
			bitis set. The CPU clears this bit by setting the ServicedOutPktRdy bit.						

9.6.17 Maximum packet size for IN endpoint-INMAXP

InMaxP is an 8-bit register that holds the maximum packet size for transactions through the currently-selected IN endpoint – inunits of 8 bytes, except that a value of 2 sets the maximum packet size to 16. In setting this value, you should note the constraints placed by the USBSpecification on packet sizes for Bulk, Interrupt and Isochronous transactions in Full-speed operations. There is an InMaxP register for each IN endpoint (except Endpoint 0).

INMAXP (RW)

0xC010

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Inmaxp										
8'h00										
RW										

Description of Word

Bit	Value	Symbol	Description				
7:0	8'h00	Inmaxp	Maximum Packet Size/transaction.				

9.6.18 Control Status register 1 for IN endpoint-INCSR1

InCSR1 is an 8-bit register that provides control and status bits for IN transactions through the currently-selected endpoint. There is an InCSR1 register for each IN endpoint (not including Endpoint 0).

INCSR1

0xC011

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	ClrDataTog	SentStall	SendStall	FlushFIFO	UnderRun	FIFO	InPktRdy
				(self-clearing)		NotEmpty	
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
R	Set	R/Clear	RW	Set	R/Clear	R/Clear	R/Set

Bit	Value	Symbol	Description
7	1'b0		Unused. Returns zero when read.
6	1'b0	ClrDataTog	The CPU writes a 1 to this bit to reset the endpoint IN data toggle to 0.
5	1'b0	SentStall	This bit is set when a STALL handshake is transmitted. The FIFO is flushed and the
			InPktRdy bitis cleared (see below). The CPU should clear this bit.
4	1'b0	SendStall	The CPU writes a 1 to this bit to issue a STALL handshake to an IN token. The CPU clears
			this bitto terminate the stall condition. This bit has no effect if the IN endpoint is in ISO
			mode.

3	1'b0	FlushFIFO	The CPU writes a 1 to this bit to flush the next packet to be transmitted from the endpoint						
			INFIFO. The FIFO pointer is reset and the InPktRdy bit (below) is cleared. Note: If the						
			FIFOcontains two packets, FlushFIFO will need to be set twice to completely clear the						
			FIFO.						
2	1'b0	UnderRun	In ISO mode, this bit is set when a zero length data packet is sent after receiving an IN						
			token withthe InPktRdy bit not set. In Bulk/Interrupt mode, this bit is set when a NAK is						
			returned inresponse to an IN token. The CPU should clear this bit.						
1	1'b0	FIFONotEmpty	This bit is set when there is at least 1 packet in the IN FIFO.						
0	1'b0	InPktRdy	The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically						
			when adata packet has been transmitted. An interrupt is generated (if enabled) when the bit						
			is cleared.						

9.6.19 Control Status register 2 for IN endpoint-INCSR2

INCSR2 is an 8-bit register that provides further control bits for IN transactions through the currently-selected endpoint. There is an INCSR2 register for each IN endpoint (not including Endpoint 0).

INCSR2

0xC012

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
AutoSet	ISO	Mode	DMAEnab	FrcDataTog			
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
RW	RW	RW	RW	RW	R	R	R

Description of Word

.

Bit	Value	Symbol	Description
7	1'b0	AutoSet	If the CPU sets this bit, InPktRdy will be automatically set when data of the maximum
			packet size(value in InMaxP) is loaded into the IN FIFO. If a packet of less than the
			maximum packet size isloaded, then InPktRdy will have to be set manually.
6	1'b0	ISO	The CPU sets this bit to enable the IN endpoint for isochronous transfers (ISO mode), and
			clears itto enable the IN endpoint for bulk/interrupt transfers.
5	1'b0	Mode	The CPU sets this bit to enable the endpoint direction as IN, and clears it to enable the
			endpointdirection as OUT. Valid only where the same endpoint FIFO is used for both IN
			and OUT transactions.
4	1'b0	DMAEnab	The CPU sets this bit to enable the DMA request for the IN endpoint.
3	1'b0	FrcDataTog	The CPU sets this bit to force theendpoint's IN data toggle to switch after each data packet
			is sentregardless of whether an ACK was received. This can be used by interrupt IN
			endpoints which areused to communicate rate feedback for Isochronous endpoints.
2:0	3'b000		Unused, always return 0.

9.6.20 Maximum packet size for OUT endpoint-OUTMAXP

OutMaxP is an 8-bit register that holds the maximum packet size for transactions through the currently-selected OUT endpoint-in units of 8 bytes, except that a value of 2 sets the maximum packet size to 16.In setting this value, you should note the constraints placed by the USB Specification on packet sizes forBulk, Interrupt and Isochronous transactions in Full-speed operations. There is an OutMaxP register for each OUT endpoint (except Endpoint 0).

OUTMAXP (RW)

0xC013

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Outmaxp											
8'h00											
	RW										

Description of Word

Bit	Value	Symbol	Description				
7:0	8'h00	Outmaxp	Maximum Packet Size/transaction.				

9.6.21 Control Status register 1 for OUT endpoint-OUTCSR1

OutCSR1 is an 8-bit register that provides control and status bits for OUT transactions through the currently-selected endpoint. It is reset to 0.

OUTCSR1

0xC014

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
ClrDataTog	SentStall	SendStall	FlushFIFO (self-clearing)	DataError	UnderRun	FIFO Full	OutPktRdy
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
Set	R/Clear	RW	Set	R	R/Clear	R	R/Clear

Bit	Value	Symbol	Description
7	1'b0	ClrDataTog	The CPU writes a 1 to this bit to reset the endpoint data toggle to 0.
6	1'b0	SentStall	This bit is set when a STALL handshake is transmitted. The CPU should clear this bit.
5	1'b0	SendStall	The CPU writes a 1 to this bit to issue a STALL handshake. The CPU clears this bit to
			terminatethe stall condition. This bit has no effect if the OUT endpoint is in ISO mode.

4	1'b0	FlushFIFO	The CPU writes a 1 to this bit to flush the next packet to be read from the endpoint OUT
			FIFO.
			Note: If the FIFO contains two packets, FlushFIFO will need to be set twice to completely
			clear theFIFO.
3	1'b0	DataError	This bit is set when OutPktRdy is set if the data packet has a CRC or bit-stuff error. it is
			clearedwhen OutPktRdy is cleared. The bit is only valid in ISO mode.
2	1'b0	UnderRun	This bit is set if an OUT packet cannot be loaded into the OUT FIFO. The CPU should
			clear thisbit. The bit is only valid in ISO mode.
1	1'b0	FIFOfull	This bit is set when no more packets can be loaded into the OUT FIFO.
0	1'b0	OutPktRdy	This bit is set when a data packet has been received. The CPU should clear this bit when
			the packetas been unloaded from the OUT FIFO. An interrupt is generated when the bit is
			set.

9.6.22 Control Status register 2 for OUT endpoint-OUTCSR2

OutCSR2 is an 8-bit register that provides further control bits for OUT transactions through the currently-selected endpoint. It is reset to 0.

OUTCSR2

0xC015

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
AutoClear	ISO	DMAEnab	DMAMode	-			
1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
RW	RW	RW	RW	RW	R	R	R

Description of Word

.

Bit	Value	Symbol	Description
7	1'b0	AutoClear	If the CPU sets this bit then the OutPktRdy bit will be automatically cleared when a packet
			ofOutMaxP bytes has been unloaded from the OUT FIFO. When packets of less than the
			maximumpacket size are unloaded, OutPktRdy will have to be cleared manually
6	1'b0	ISO	The CPU sets this bit to enable the OUT endpoint for Isochronous transfers, and clears it to
			enablethe OUT endpoint for Bulk/Interrupt transfers
5	1'b0	DMAEnab	The CPU sets this bit to enable the DMA request for the OUT endpoint.
4	1'b0	DMAMode	Two modes of DMA operation are supported: DMA Mode 0 in which a DMA request is
			generated for all received packets, together with an interrupt (if enabled); and DMA Mode 1
			in which a DMArequest (but no interrupt) is generated for OUT packets of sizeOutMaxP
			bytes and an interrupt(but no DMA request) is generated for OUT packets of any other
			size. The CPU sets this bit toselect DMA Mode 1 and clears this bit to select DMA Mode
			0.
3:0	4'b0000		Unused, always return 0.

9.6.23 Number of received bytes in Endpoint 0 FIFO-COUNT0

Count0 is a 7-bit read-only register that indicates the number of received data bytes in the Endpoint 0 FIFO. The value returned valid while OutPktRdy (CSR0.bit0) is set.

COUNTO (R)

0xC016

Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Count0									
7'h00									
R									

Description of Word

Bit	Value	Symbol		Description
6:0	7'h00	Count0	Endpoint 0 OUT Count.	

9.6.24 Number of bytes in OUT endpoint FIFO-OUTCOUNT1

OutCount1 is an 8-bit read-only register that holds the lower 8 bits of the number of received data bytes in the packet in the FIFOassociated with the currently-selected OUT endpoint. The value returned is valid while OutPktRdy (OutCSR1.bit0) is set.

OUTCOUNTT1 (R)

0xC016

Bit 7	Bit 6	Bit 6 Bit 5		Bit 3	Bit 2	Bit 1	Bit 0		
Outcounter1									
	8'h00								
	R								

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	Outcounter1	Endpoint OUT Count – lower 8 bits

9.6.25 Number of bytes in OUT endpoint FIFO-OUTCOUNT2

OutCount2 is a 3-bit read-only register that holds the upper 3 bits of the number of received data bytes in the packet in the FIFO associated with the currently-selected OUT endpoint. The value returned is valid while OutPktRdy (OutCSR1.bit0) is set.

OUTCOUNTER2 (R)

0xC017

Bit 2	Bit 1	Bit 0						
Outcounter2								
3'b000								
R								

Description of Word

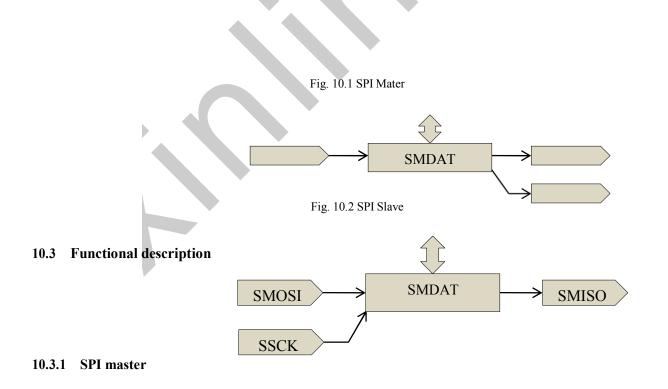
Bit	Value	Symbol	Description
2:0	3'b000	Outcounter2	Endpoint OUT Count – upper 3 bits.

9.6.26 FIFOs for Endpoints 0 to 3-FIFOx

(Addresses0xC020–0xC023)

This address range provides 4 addresses for CPU access to the FIFOs for each endpoint. Writing to these addresses loads datainto the IN FIFO for the corresponding endpoint. Reading from these addresses unloads data from the OUT FIFO for the corresponding endpoint.

The FIFOs are located on byte boundaries (Endpoint 0 at 0xC020, Endpoint 1 at 0xC021 ... Endpoint 3 at 0xC023).


10 SPI

The KT8P01 features Serial Peripheral Interface (SPI), including a double-buffered SPI Master and a SPI Slave. It can be configured to work in all four SPI modes. The default is mode 0. The SPI connects to the following pins of the device: MMISO, MMOSI, MSCK, MCSN, SMISO, SMOSI, SSCK, and SCSN. And this SPI master function support 4-wire, 3-wire with MCSN (MMOSI is in-out port), 3-wire without MCSN (default mode), and 2-wire mode (MMOSI is in-out port, without MCSN).

10.1 Features

- > SPI Master support double buffered FIFO
- Full-duplex operation
- Supports SPI modes 0 through 3
- > SPI Master support 2-wire, 3-wire and 4wire operation modes
- > SPI Master configured MMOSI to bi-directional port at 2-wire and 3-wire modes
- Configurable data order on xMISO/xMOSI

10.2 Block diagram

The following registers control the SPI master:

Addro	Name/mnemonic	Bit	Reset	Туре	Description
-------	---------------	-----	-------	------	-------------

.

KT8P01

SS			Value		
(Hex)					
0xFC	SPIMCON0	7:0	0x00	R/W	SPI Master configuration register0
	Spi_3wire_mode_en	7	0	R/W	1'b0: disable SPI Master 3-wire mode
					1'b1: 3-wire SPI mode enable
					(SCK, CSN and SDIO, setting mosi_out_en bit)
	Clock frequency	6:4	000	R/W	Frequency on MSCK. ckMCU is MCU clock frequency
					000: 1/2 ckMCU
					001: 1/4 ckMCU
					010: 1/8 ckMCU
					011: 1/16 ckMCU
					100: 1/32 ckMCU
					101: 1/64 ckMCU
					110: 1/64 ckMCU
					111: 1/64 ckMCU
	Dataorder	3	0	R/W	Data order (bit wise per byte) on serial output and input
					(MMOSI and MMISO respectively).
					1: LSBit first, MSBit last.
					0: MSBit first, LSBit last.
	Clockpolarity	2	0	R/W	Defines the SPI Master's operating mode together
					with SPIMCON0
					1: MSCK is active 'low'.
					0: MSCK is active 'high'.
	Clockphase	1	0	R/W	Defines the SPI Master's operating mode together with
					SPIMCON0
					1: Sample on trailing edge of MSCK, shift on lead-ing edge.
					0: Sample on leading edge of MSCK, shift on trail-ing edge.
	Spi_en	0	0	R/W	1: SPI Master is enabled.
					0: SPI Master is disabled.
0xFD	SPIMCON1	7:0	0x04	R/W	SPI Master configuration register1
	Resync_en	7	0	W	When enable spi_2wire_mode, write this bit toggle the MSCK
					line from un-activity level to activity level for at least Tresync
					period, SPI_RESYNC_DLY register decide time of duration,
					example Fig. 10.4.
	Spi_2wire_mode_en	6	0	R/W	1'b0: disable 2-wire mode.
					1'b1: enable 2-wire mode.
					(SCK and SDIO, setting mosi_out_en bit)
	Csn_enable	5	0	R/W	1'b0: disable SPI Master MCSN.
					1'b1: enable SPI Master MCSN.
	burst	4	0	R/W	1'b0: disable SPI Master burst,
					1'b1: enable SPI Master burst,
					When setting this bit for SPI continuous transfer more than 1
					byte or more, stop burst transfer, setting this bit to "0" before
0xFD	Spi_en SPIMCON1 Resync_en Spi_2wire_mode_en Csn_enable	0 7:0 7 6 5	0 0x04 0 0 0	R/W R/W R/W	0: MSCK is active 'high'. Defines the SPI Master's operating mode together with SPIMCON0 1: Sample on trailing edge of MSCK, shift on lead-ing edge. 0: Sample on leading edge of MSCK, shift on trail-ing edge. 1: SPI Master is enabled. 0: SPI Master is disabled. SPI Master configuration register1 When enable spi_2wire_mode, write this bit toggle the MSC line from un-activity level to activity level for at least Tresy period, SPI_RESYNC_DLY register decide time of duration example Fig.10.4. 1'b0: disable 2-wire mode. 1'b1: enable 2-wire mode. (SCK and SDIO, setting mosi_out_en bit) 1'b0: disable SPI Master MCSN. 1'b1: enable SPI Master burst, 1'b1: enable SPI Master burst, 1'b1: enable SPI Master burst, When setting this bit for SPI continuous transfer more than

.

KT8P01

				the transfer last bytes.
				Burst function used for these modes with MCSN.
Mosi_flag	3	0	R	Mosi port status flag:
				1: mosi - input
				0: mosi - output
Reserved	2	0	R	
Re_trans_en	1	0	R/W	Only using 2-wire mode, if the device get out of synchronous,
				after wait some time re-synchronous mode, setting this bit, the
				devices can operation, again
Mosi_out_en	0	0	R/W	1'b0: mosi is output
				1'b1: mosi is input
				(only using 2-wire mode and 3-wire mode with CSN)
SPIMSTAT	7:0	0x3F	R	SPI Mater status register
Rxfifo_full	7	0	R	1: RX FIFO full.
				0: RX FIFO can accept more data from SPI.
Rxdata ready	6	0	R	1: Data available in RX FIFO.
				0: No data in RX FIFO.
Txfifo empty	5	1	R	1: TX FIFO empty.
				0: Data in TX FIFO.
Txfifo ready	4	1	R	1: Location available in TX FIFO.
_ ,				0: TX FIFO full.
maskIrqRxFifoFull	3	1	R/W	1: Disable interrupt when RX FIFO is full.
				0: Enable interrupt when RX FIFO is full.
maskIrqRxDa	2	1	R/W	1: Disable interrupt when data is available in RX FIFO.
taReady				0: Enable interrupt when data is available in RX FIFO.
maskIrqTxFifoEmpty	1	1	R/W	1: Disable interrupt when TX FIFO is empty.
				0: Enable interrupt when TX FIFO is empty.
maskIrqTxFifo	0	1	R/W	1: Disable interrupt when a location is available in TX FIFO.
Ready				0: Enable interrupt when a location is available in TX FIFO.
SPIMDAT	7:0	0x00	R/W	SPI Master data register.
				Accesses TX (write) and RX (read) FIFO buffers, both two
				bytes deep.
SPIDLY	7:0	0x00	R/W	
Csn_dly	7:4	0x0	R/W	SPI CSN delay counter enable setting. SPI CSN delay time
				calculation, please reference to SPI CSN delay time output
				select. Only using when CSN enable
Gap_dly	3:0	0x0	R/W	Gap delay counter enable setting. Gap delay time calculate.
				Please reference to the gap delay time configuration.
SPITEST	7:0	0xF0	R/W	SPI Master TEST REGISTER
Msk_tx_underflow	7	1	R/W	1: Disable TX FIFO underflow flag when TX FIFO is empty,
				read again
				0: Enable TX FIFO underflow flag when TX FIFO is empty,
	Reserved Re_trans_en Re_trans_en Mosi_out_en Mosi_out_en SPIMSTAT Rxfifo_full Rxfata_ready Txfifo_empty Txfifo_ready Txfifo_ready maskIrqRxFifoFull maskIrqRxFifoFull maskIrqRxFifoEmpty maskIrqTxFifoEmpty SPIMDAT SPIMDAT SPIMDAT SPIMDAT Gap_dly	Reserved2Re_trans_en1Mosi_out_en0SPIMSTAT7.0Rxfifo_full7Rxfifo_full6Txfifo_empty5Txfifo_ready4maskIrqRxFifoFull3maskIrqRxFifoFull1maskIrqTxFifo0Ready1SPIMDAT7:0SPIMDAT7:0Gap_dly3:0SPITEST7:0	Number ofNumber ofReserved20Re_trans_en10Mosi_out_en00SPIMSTAT7:00x3FRxfifo_full70Rxdata_ready60Txfifo_empty51Txfifo_ready41masklrqRxFifoFull31masklrqRxFifoFull31masklrqTxFifo01masklrqTxFifo01SPIMDAT7:00x00SPIDLY7:00x00Csn_dly3:00x0Gap_dly3:00x0SPITEST7:00xF0	Reserved20RRe_trans_en10R/WMosi_out_en00R/WSPIMSTAT7.00x3FRRxfifo_full70RRxdata_ready60RTxfifo_empty51RTxfifo_ready41RmasklrqRxFifoFull31R/WmasklrqRxFifoFull31R/WmasklrqTxFifoEmpty11R/WMosi_ut_fifo_ready11R/WmasklrqTxFifoFull31R/WMasklrqTxFifoEmpty11R/WMasklrqTxFifoEmpty11R/WSPIMDAT7:00x00R/WSPIDLY7:00x00R/WGap_dly3:00x0R/WSPITEST7:00xFOR/W

					read again
	Msk_tx_overflow	6	1	R/W	1: Disable TX FIFO overflow when TX FIFO is full, write
					again
					0: Enable TX FIFO overflow when TX FIFO is full, write again
	Msk_rx_underflow	5	1	R/W	1: Disable RX FIFO underflow flag when RX FIFO is empty,
					read again
					0: Enable RX FIFO underflow flag when RX FIFO is empty,
					read again
	Msk_rx_overflow	4	1	R/W	1: Disable RX FIFO overflow when RX FIFO is full, write
					again
					0: Enable RX FIFO overflow when RX FIFO is full, write again
	Tx_underflow_flag	3	0	R	1: TX FIFO underflow flag when TX FIFO is empty, read again
					Write this bit, clear the flag signal
	Tx_overflow_flag	2	0	R	1: TX FIFO overflow flag when TX FIFO is overflow, write
					again
					Write this bit, clear the flag signal
	Rx_underflow_flag	1	0	R	1: RX FIFO underflow flag when RX FIFO is empty, read again
					Write this bit, clear the flag signal
	Rx_overflow_flag	0	0	R	1: RX FIFO overflow flag when RX FIFO is overflow, write
					again
					Write this bit, clear the flag signal
0xE4	SPI_RESYNC_DLY	7:0	0x10	R/W	SPI re-synchronous time, only 2-wire mode

The SPI Master is configured through SPIMCON0 and SPIMCON1. It is enabled by setting SPIMCON0 [0] to '1'. The SPI Master supports all four SPI modes, selected by SPIMCON0[2] and SPIMCON0[1]. The bit wise data order per byte on MMISO/MMOSI is defined by SPIMCON0 [3]. MSCK can run on one of six predefined frequencies in the range of 1/2 to 1/64 of the MCU clock frequency, as defined by SPIMCON0[6]down to SPIMCON0[4]. After transferred one byte can generate interrupt (MSDONE), unless they are masked by their respective bits in SPIMSTAT [7:4]. SPIMDAT accesses both the TX (write) and the RX (read) FIFOs, which are two bytes deep. The FIFOs are dynamic and can be refilled according to the state of the status flags: "FIFO ready" means that the FIFO can accept data. "Data ready" means that the FIFO can provide minimum one byte. Four different sources can generate interrupt, unless they are masked by their respective bits in SPIMCON1, SPIMSTAT reveals which sources are active.

The gap delay configuration:

The SPI peripheral supports re-synchronization, so you can use gap delay to generation re-synchronous time by settingthe value of gap delay count register (gap: 05h). The delay time is calculated by using the following formula:

Gap delay time = ((1/system clock)*gap) * 2;

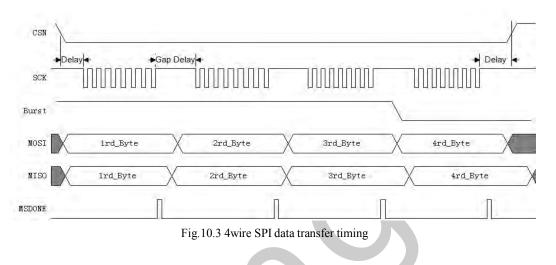
4'h0: No gap delay active.

4'h1:Gap delay =((1/16)*1)*2 = 125ns;

4'hf:Gap delay =((1/16)*15)*2 = 1.875us

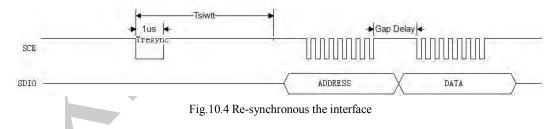
The CSN delay time configuration:

The SPI master supports adjustable SPI CSN delay (when csn_enable register enabled) before first byte transfer. The configuration register is SPIDLY and the formula is:


SPI CSN delay time = ((1/system clock)*csndly) * 2;

4'h0: No csn delay active.

4'h1: CSN delay =((1/16)*1)*2 = 125ns;


4'hf: CSN delay =((1/16)*15)*2 = 1.875us

The gap delay time and csn delay time is configured by above formula, in fig.10.3.

10.3.2 Re-Synchronize the Interface (2-wire)

If the mouse controller and the mouse sensor get out of synchronization, then the data either written or read from the registers will be incorrect. To solve this issue, mouse sensors have different solutions. One of them is trying to toggle the SPI CLK line from high to low for at least Tresync period, this period is configured by the SPI_RESYNC_DLY register, and then toggle it from low to high to wait at least Tsiwtt period to satisfy re-synchronization condition, Tsiwtt is controlled by software.

10.3.3 3-wire SPI data transfer timing

KT8P01 support two mode 3-wire mode SPI operations, one is with CSN signal, MOSI is in-out data line, burst function is familiar to the 4-wire function. Interrupt (MSDONE) is generated after 1 bytes transfer completed, for example the Fig. 10.5. Another is operation without CSN, the SPI Master function does not generate any chip select signal (CSN). The programmer typically uses another programmable digital I/O to act as chip selects for one or more external SPI Slave devices, in Fig.10.6.

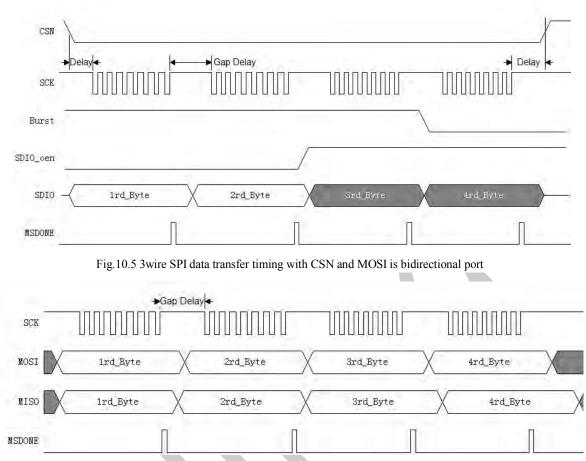


Fig.10.6 3wire SPI data transfer timing without CSN, software can configure CSN.

10.3.4 SPI slave

The following registers cont	rol the SPI slave:

Address	Name/mnemonic	Bit	Reset	Туре	Description
(Hex)			Value		
0xBC	SPISCON	6:0	0x70	R/W	SPI Slave configuration register
	maskIrqCsnHigh	6	1	R/W	1: Disable interrupt when SCSN goes high.
					0: Enable interrupt when SCSN goes high
	maskIrqCsnLow	5	1	R/W	1: Disable interrupt when SCSN goes low.
					0: Enable interrupt when SCSN goes low
	maskIrqSpiSlaveDone	4	1	R/W	1: Disable interrupt when SPI Slave is done with the current SPI
					transaction.
					0: Enable interrupt when SPI Slave is done with the current SPI
					transaction.

.

KT8P01

Dataorder	3	0	R/W	Data order (bit wise per byte) on serial output and input
				(SMOSI and SMISO respectively).
				1: LSBit first, MSBit last.
				0: MSBit first, LSBit last.

	Clockpolarity	2	0	R/W	Defines the SPI Master's operating mode together
	croenpolarity	_	Ũ	10.11	with SPISCON0
					1: SSCK is active 'low'.
					0: SSCK is active 'high'.
	Clockphase	1	0	R/W	Defines the SPI Slave's operating mode together with
	1				SPIRCON0
					1: Sample on trailing edge of SSCK, shift on leading edge.
					0: Sample on leading edge of SSCK, shift on trailing edge.
	Spi en	0	0	R/W	1: SPI Slave is enabled.
					0: SPI Slave is disabled.
					Please make sure that after the Spi_en is enabled, the value of
					Clockpolarity and Clockphase cannot be changed.
0xBE	SPISSTAT	6:0	0x00	R	SPI Slave status register
	Tx_buffer_status	6	0	R	0: Location available in TX buffer.
					1: TX buffer full.
					Cleared when the cause is removed.
	Csnhigh	5	0	R	Interrupt source:
					1: Positive edge of SCSN detected
					0: Positive edge of SCSN not detected. Cleared when read.
	Csnlow	4	0	R	Interrupt source:
					1: Negative edge of SCSN detected
					0: Negative edge of SCSN not detected. Cleared when read.
	<reserved></reserved>	3:1	-	R	
	Spi_done	0	0	R	Interrupt source:
					1: SPI Slave done with an SPI transaction.
					0: SPI Slave not done with an SPI transaction.
					Cleared when read.
0xBF	SPISDAT	7:0	0x00	R/W	SPI Slave data register.
					Accesses TX (write) and RX (read) buffers.

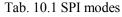
The SPI slave is configured through SPISCON. It is enabled by setting SPISCON.0 to '1'. The SPI Slave supports all four SPI modes, selected by SPISCON.2 and SPISCON.1. The bit wise data order per byte on SMISO/SMOSI is defined by SPISCON.3. After transferred one byte or CSN high/low edge can generate interrupt (SSDONE), unless they are masked by their respective bits in SPIRCON.

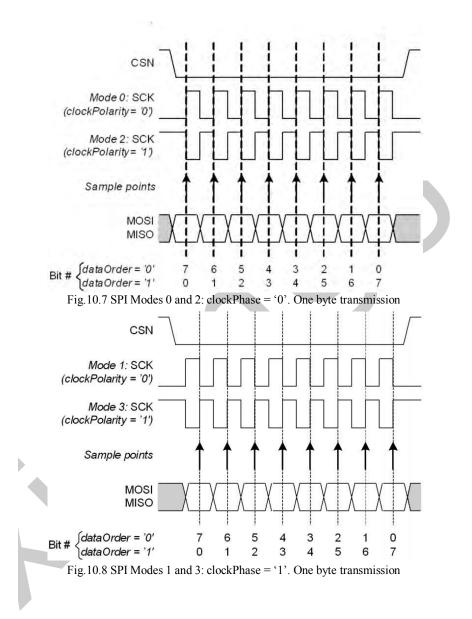
When an interrupt occurs, SPISSTAT provides information on what the source.

SPISDAT is used for data access in both directions. Prior to the first clock from the external SPI master, the MCU can write one byte to SPISDAT. For maximum data thruput, after the first byte has been transferred, software must ensure that there always are two bytes in the TX chain; one that is being transferred and another in the pipe.

10.3.5 SPI modes

The four different SPI modes are presented in tab. 10.1


SPI mode cloclPolarity clockPhase Clock shift edge Clock sample edge	e
--	---



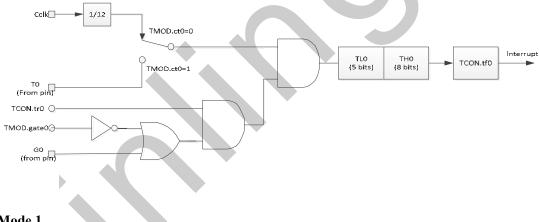
.

KT8P01

0	0	0	Trialing	Falling	leading	Rising
1	0	1	leading	Rising	Trialing	Falling
2	1	0	Trialing	Rising	leading	Falling
3	1	1	leading	Falling	Trialing	Rising

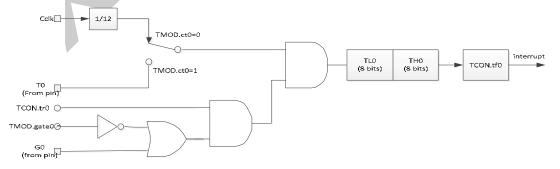
11Timer 0 and Timer 1

The KT8P01 contain two 16-bit timer/counters, Timer 0 and Timer 1 which compatible to standard 8051. In the "timer mode", timer registers are incremented everysystem 1/12 clock period, when appropriate timer is enabled. In the "countermode" the timer registers are incremented every falling transition on their score sponding input pins: T0 or T1. The input pins are sampled every system clock period.


11.1 Timer 0

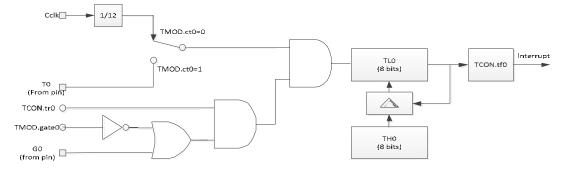
11.1.1 Mode 0

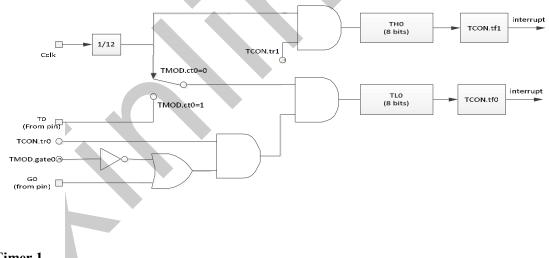
In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1'sto all 0's, it sets the timer overflow flag TCON.tf0. The overflow flag TCON.tf0 then can be used to request an interrupt.


The counted input is enabled to the timer when TCON.tr0=1 and either TMOD.gate0=0 or G0=1 (setting TMOD.gate0=1 allows the timer 0 to be controlled by external input G0, to facilitate pulse widthmeasurements).

The 13-bit register consists of all 8 bits of TH0 and the lower 5 bits of TL0. The upper 3 bits of TL0are indeterminate and should be ignored. Setting the run flag (TCON.tr0) does not clear the registers.

11.1.2 Mode 1


Mode 1 is the same as mode 0, except that the timer register is run with all 16 bits. Mode 1 is shownin figure below.

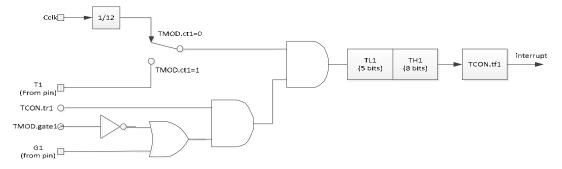

11.1.3 Mode 2

Mode 2 configures the timerregister as an 8-bit counter (TL0) with automatic reloads as shown in figure below. Overflow from TL0 not only sets TCON.tf0, but also reloads TL0 with the contents of TH0, which is preset by software. The reload leaves TH0 unchanged.

11.1.4 Mode 3

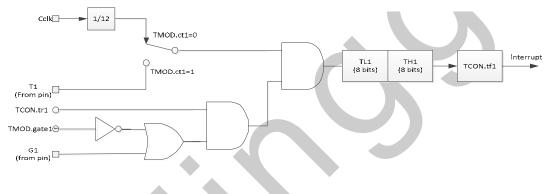
Timer 0 inMode 3 establishes TL0 and TH0 as two separatecounters. The logic forMode 3 on Timer 0 isshownin figure below. TL0uses the Timer 0control bits: TCON.tr0, TMODE.gate0, TCON.ct0, TCON.tf1 and G0. TH0 is locked into a timer function(counting machine cycles) and uses the TCON.tr1 and TCON.tf1 flagsfrom Timer 1 and controls Timer1 interrupt. Mode3is provided for applications requiring an extra 8-bit timer/counter. When Timer 0 is in Mode 3, Timer 1 can be turned off by switching it into its ownMode 3 or can still be used by the serialchannel as a baud rate generator or in any application where interrupt from Timer1 is not required.

11.2 Timer 1

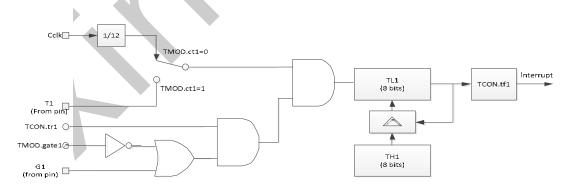

11.2.1 Mode0

In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1'sto all 0's, it sets the timer overflow flag TCON.tfl. The overflow flag TCON.tfl then can be used to request an interrupt.

The counted input is enabled to the timer when TCON.tr1=1 and either TMOD.gate1=0 or G1=1 (setting TMOD.gate1=1 allows the timer 0 to be controlled by external input G1, to facilitate pulse widthmeasurements).



The 13-bit register consists of all 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits of TL1 are indeterminate and should be ignored. Setting the run flag (TCON.tr1) does not clear the registers.


11.2.2 Mode1

Mode 1 is the same as mode 0, except that the timer register is run with all 16 bits. Mode 1 is shownin figure below.

11.2.3 Mode2

Mode 2 configures the timerregister as an 8-bit counter (TL1) with automatic reloads as shown in figure below. Overflow from TL1 not only sets TCON.tf1, but also reloads TL1 with the contents of TH1, which is preset by software. The reload leaves TH1 unchanged.

11.2.4 Mode3

Timer 1 in mode 3 simply holds its count. The effectis the same as setting TCON.tr1=0.

11.3 SFR registers

11.3.1 Timer/Counter control register – TCON

TCONregister reflects the current status of MCU Timer 0 and Timer 1 and it is used to control the operation of these modules.

TCON(RW)

0x88

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
tf1	tr1	tf0	tr0	ie1	it1	ie0	it0
1'b0	1'b0						
RW	RW						

Description of Word

Bit	Value	Symbol	Description
7	1'b0	tfl	Timer 1 overflow flag. Set by hardware when Timer1 overflows.Cleared by hardware when
			interrupt is processed.
6	1'b0	tr1	Timer 1 Run control. If cleared, Timer 1 stops.
5	1'b0	tf0	Timer 1 overflow flag. Set by hardware when Timer 0 overflows.Cleared by hardware
			when interrupt is processed.
4	1'b0	tr0	Timer 0Run control. If cleared, Timer 0 stops.
3	1'b0	ie1	External interrupt 1 flag. Set by hardware, when external interrupt int1 (edge/level,
			depending on settings) is observed. Cleared by hardware when interrupt is processed.
2	1'b0	it1	External interrupt 1 type control.
			1: falling edge,
			0: low level.
1	1'b0	ie0	External interrupt 0 flag. Set by hardware, when external interrupt int0 (edge/level,
			depending on settings) is observed. Cleared by hardware when interrupt is processed.
0	1'b0	itO	External interrupt 0 type control.
			1:falling edge,
			0: low level.

11.3.2 Timer mode register – TMOD

TMODregister is used for configuration of Timer 0 and Timer 1.

TMOD (RW)

.

0x89

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
gate1	ct1	mode1		gate0	ct0	mo	de0

|--|

1'b0	1'b0	2'b00	1'b0	1'b0	2'b00
RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description
7	1'b0	gate1	Timer 1 gate control
6	1'b0	ct1	Timer 1 counter/timer select. 1: Counter, 0: Timer
5:4	2'b00	mode1	Timer 1 mode
			00 – Mode 0: 13-bit counter/timer
			01 – Mode 1: 16-bit counter/timer
			10 – Mode 2: 8-bit auto-reload timer
			11 – Mode 3: Timer 1 stopped
3	1'b0	gate0	Timer 0 gate control
2	1'b0	ct0	Timer 0 counter/timer select. 1: Counter, 0: Timer
1:0	2'b00	mode0	Timer 0 mode 00 – Mode 0: 13-bit counter/timer 01 – Mode 1: 16-bit counter/timer 10 – Mode 2: 8-bit auto-reload timer 11 – Mode 3: two 8-bit timers/counters

11.3.3 Timer 0 – TH0, TL0

<u>TH0 (RW)</u>

0x8C

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
тно										
	8'h00									
RW										

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	TH0	higher byte of Timer 0

<u>TL0 (RW)</u>

.

0x8A

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
TLO									
8'h00									
RW									

Bit	Value	Symbol	Description
7:0	8'h00	TL0	lower byte of Timer 0

11.3.4 Timer 1 – TH1, TL1

<u>TH1 (RW)</u>

0x8D

0x8B

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
THI									
8'h00									
			R	W					

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	TH1	higher byte of Timer 1

<u>TL1(RW)</u>

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
			T	L1						
8'h00										
	RW									

Description of Word

.

Bit	Value	Symbol	Description
7:0	8'h00	TL1	lower byte of Timer 0

12 Timer 2

Timer 2 is a complex 16-bit timer, which could support PWM function. It issued for all kinds of digital signal generation and eventcapturinglike pulsegeneration, pulsewidth modulation, pulse width measuring etc. Timer 2 in combination with the compare/capture/reload registers allows the following modes:

- Reload: modulation of timer2 cycle time
- Capture: up to 4 high speed inputs with 0.75 μsec resolution (MCU is clocked on 16MHz)
- Left Compare: up to 4 PWM signals with 65535 steps at maximumand 0.75 μsec resolution

12.1 Timer 2 operate

The timer 2, which is a 16-bit-wide register, can operate as timer, event counter, or gated timer.

12.1.1 Timer Mode

Timer mode is invoked by setting the t2i0=1 and t2i1=0 in the T2CONregister. In this mode, the count rate is derived from the clock input.

Timer 2 is incremented every 12 or 24 clock cycles depending on the 2:1 pre-scale. The pre-scale mode is selected by bit t2ps of T2CONregister. When t2ps=0, the timer counts up every 12 clock cycles, otherwise every 24 cycles.

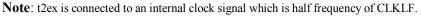
12.1.2 Event Counter Mode

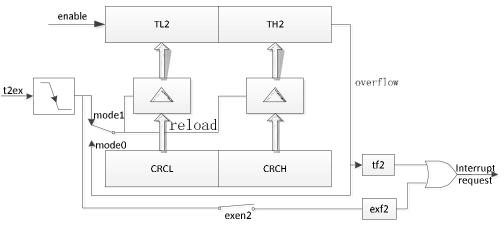
This mode is invoked by setting the t2i0=0 and t2i1=1 in the T2CONregister.

In this mode, Timer 2 is incremented when external signal T2changes its value from 1 to 0. The T2input is sampled at every rising edge of the clock. Timer 2 is incremented in the cycle following the one in which the transition was detected. The maximum count rate is 1/2 of the clock frequency.

12.1.3 Gated Timer Mode

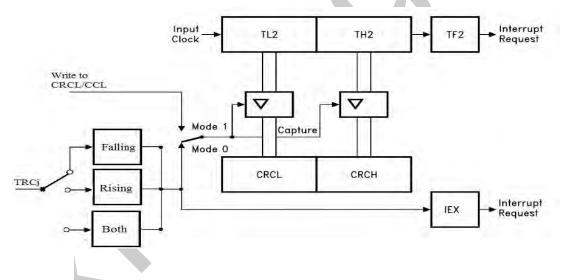
This mode is invoked by setting the t2i0=1 and t2i1=1 in the T2CONregister.


In this mode, Timer 2 is incremented every 12 or 24 clock cycles (depending on T2CON t2ps flag). Additionally, it is gated by the external signal T2. When T2=0, Timer 2 is stopped. The T2 input is sampled into a flip-flop and then it blocks Timer 2 from incrementing.


12.2 Reload Function

A 16-bit reload from the CRC register can be done in two modes:

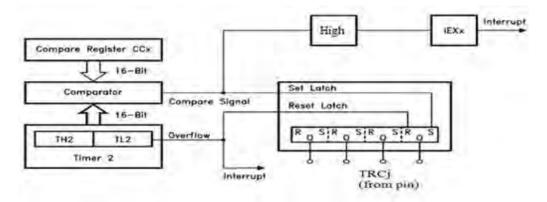
- 1. Reload Mode 0: Reload signal is generated by Timer 2 overflow (auto reload).
- 2. Reload Mode 1: Reload signal is generated by negative transition at t2ex.



12.3 Capture Function

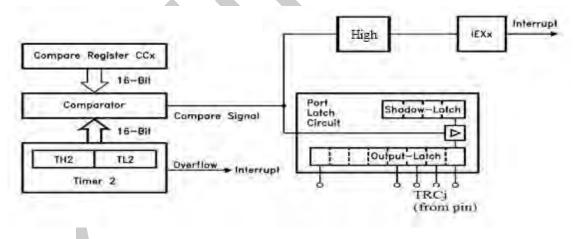
Each of the three compare or capture registers CC1 to CC3 and the CRC register can be used to latchthe current 16-bit value of the timer 2 registers TL2 and TH2. Two different modes are provided forthis function. In mode 0, an external event latches the timer 2 contents to a dedicated captureregister. In mode 1, a capture will occur upon writing to the low order byte of the dedicated 16-bit bit capture register.

12.4 Compare Function

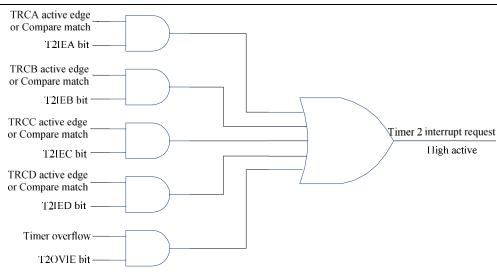

The compare function of a timer/register combination can be described as follows. The 16-bit valuestored in a compare/capture register is compared with the contents of the timer register. If the countvalue in the timer register matches the stored value, an appropriate output signal isgenerated at accresponding port pin.

12.4.1 Compare mode 0

In mode 0, upon matching the timer and compare register contents, the output signal changes fromlow to high. It goes back to a low level on timer overflow. As long as compare mode 0 is enabled, the appropriate output pin is controlled by the timer circuit only, and


not by the user. Writing to theport will have no effect. The functional diagram of a port latch in compare mode 0 is shown in figure below.

12.4.2 Compare mode 1


In compare mode 1, the software adaptively determines the transition of the output signal. It is commonly used when output signals are not related to a constant signal period (as in a standardPWM generation) but must be controlled very precisely with high resolution and without jitter. Incompare mode 1, both transitions of a signal can be controlled. Compare outputs in this mode can be regarded as high speed outputs which are independent of the CPU activity.

If mode 1 is enabled, and the software writes to the appropriate output latch at the port, the newvalue will not appear at the output pin until the next compare match occurs. Thus, one can choosewhether the output signal is to make a new transition (1-to-0 or 0-to-1, depending on the actual pinlevel) or should keep its old value at the time the timer 2 counter matches the stored compare value. The functional diagram of a timer/compare register/port latch configuration incompare mode 1 is shown in figure below.

12.5 Timer 2 Interrupt

Timer 2 generates a Timer 2 interrupt request from five sources, as shown infigure below.

12.6 SFR registers

12.6.1 Timer 2 control register – T2CON

T2CONregister reflects the current status of Timer 2 and is used to control the Timer 2 operation.

0xC8

T2CON (RW)

		~					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
t2ps	i3fr		t2r		t2cm	t2i	
1'b0	1'b0	1'b0	2'b0		2'b0	1'b0	
RW	RW		RW		RW	R	W

Description of Word

Bit	Value	Symbol	Description
7	1'b0	t2ps	Prescaler select
			t2ps = 0 timer 2 is clocked with $1/12$ of the oscillator frequency
			t2ps = 1 timer 2 is clocked with $1/24$ of the oscillator frequency
6	1'b0	i3fr	Active edge selection for external interrupt "int3"
			0 falling edge
			1 rising edge
5	1'b0		Not used
4:3	1'b0	t2r	Timer 2 reload modeselection:
			0X – reload disabled
			10 Mode 0
			11 Mode 1

2	1'b0	t2cm	Timer 2 compare modeselection			
			Mode 0			
			Mode 1			
1:0	1'b0	t2i	Timer 2 input selection:			
			00 timer 2 stopped			
			01 input frequency f/12 or f/24			
			10 timer 2 is incremented by falling edge detection at pin "T2"			
			11 input frequency f/12 or f/24 gated by external pin "T2"			

12.6.2 Timer 2 – TH2, TL2

The TL2and TH2registers reflect the state of Timer 2. TH2 holds higher byte and TL2 holds lower byte. Timer 2 can be configured to operate in compare, capture orreload modes.

<u>TH2 (RW)</u>				0xCD			Л				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
				TI	H2						
				8'1	100						
				R	W						
Description of	Description of Word										
Bit	Bit Value Symbol Description										
7:0	7:08'h00TH2higher byte of Timer 2										
<u>TL2 (RW)</u>				0xCC							

<u>TL2 (RW)</u>

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0	
			T	L2				
8'h00								
			R	W				

Description of Word

.

Bit	Value	Symbol	Description
7:0	8'h00	TL2	lower byte of Timer 2

12.6.3 Compare/Capture enable register – CCEN

The CCENregister serves as a configuration register for the Compare/Capture Unit associated with the Timer 2.

<u>CCEN (RW)</u>

0xC1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
coca3		coca2		cocal		coca0	
2'b00		2'b00		2'b00		2'b00	
RW		R	W	RW		RW	

Description of Word

Bit	Value	Symbol	Description
7:6	2'b00	coca3	compare/capture enabled/ disabled for CC3 register
			00: compare/capture disabled
			01: capture enabled
			10: compare enabled
			11: Reserve
5:4	2'b00	coca2	compare/capture enabled/ disabled for CC2 register
			00: compare/capture disabled
			01: captureenabled
			10: compare enabled
			11: Reserve
3:2	2'b00	coca1	compare/capture enabled/ disabled for CC1 register
			00: compare/capture disabled
			01: captureenabled
			10: compare enabled
			11: Reserve
1:0	2'b00	coca0	compare/captureenabled/ disabled for CRC register
			00: compare/capture disabled
			01: captureenabled
			10: compare enabled
			11: Reserve

12.6.4 Capture moderegister – CCEN1

<u>CCEN1 (RW)</u>

0xDD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
cc3_mode		cc2_mode		cc1_mode		crc_mode	
2'b00		2'b00		2'b00		2't	600
RW		R	W	RW		RW	

Description of Word

•

Bit	Value	Symbol	Description					
7:6	2'b00	cc3_mode	capture mode for CC3 register					
			00:capture on write operation into register CCL3					
			01: capture on rising edge at pin TCRD					
			10: capture on falling edge at pin TCRD					
			11: capture on both edge at pin TCRD					
5:4	2'b00	cc2_mode	capture mode for CC2 register					
			00:capture on write operation into register CCL2					
			01: capture on rising edge at pin TCRC					
			10: capture on falling edge at pin TCRC					
			11: capture on both edge at pin TCRC					
3:2	2'b00	cc1_mode	capture mode for CC1 register					
			00: capture on write operation into register CCL1					
			01: capture on rising edge at pin TCRB					
			10: capture on falling edge at pin TCRB					
			11: capture on both edge at pin TCRB					
1:0	2'b00	crc_mode	capture mode for CRC register					
			00: capture on write operation into register CRCL					
			01:capture on rising edge at pin TCRA					
			10: capture on falling edge at pin TCRA					
			11: capture on both edge at pin TCRA					

12.6.5 Timer 2 Interrupt Enable Register – T2IER

<u>T2IER (RW)</u>

0xD2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
T2OVIE			-	T2IED	T2IEC	T2IEB	T2IEA
1'b0		3'b000		1'b0	1'b0	1'b0	1'b0
RW				RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description
7	1'b0	T2OVIE	0:Overflow interruptdisabled
			1: Overflow interrupt enabled
6:4	3'b000		Not used
3	1'b0	T2IED	0:Input-captureor compare match Interrupt disabled
			1: Input-captureor compare matchInterrupt enabled
2	1'b0	T2IEC	0:Input-captureor compare matchInterrupt disabled
			1: Input-captureor compare matchInterrupt enabled

1	1'b0	T2IEB	0:Input-captureor compare matchInterrupt disabled
			1: Input-captureor compare matchInterrupt enabled
0	1'b0	T2IEA	0:Input-captureor compare matchInterrupt disabled
			1: Input-captureor compare matchInterrupt enabled

12.6.6 Timer 2 Interrupt Status Register – T2SR

<u>T2SR (RW)</u>

0xD3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
T2OVSR				T2SRD	T2SRC	T2SRB	T2SRA
1'b0		3'b000		1'b0	1'b0	1'b0	1'b0
RW				RW	RW	RW	RW

1

Description of Word

	Symbol	Description				
1'b0	T2OVSR	Overflow flag, set when the timer 2 register overflow, clear by software				
3'b000		Not used				
1'b0	T2SRD	Input-captureflag, set by TRCD input edgeor compare match, clear by software				
1'b0	T2SRC	Input-captureflag, set by TRCC input edgeor compare match, clear by software				
1'b0	T2SRB	Input-captureflag, set by TRCB input edgeor compare match, clear by software				
1'b0	T2SRA	Input-captureflag, set by TRCA input edgeor compare match, clear by software				
	3'b000 1'b0 1'b0 1'b0	3'b000 1'b0 T2SRD 1'b0 T2SRC 1'b0 T2SRB				

Note:

12.6.7 Capture registers – CC1, CC2, CC3

The Compare/Capture registers (CC1, CC2 and CC3) are 16-bit registers used by the Compare/Capture Unit associated with the Timer 2. CCHn holds higher byte and CCLn holds lower byte of the CCn register.

<u>CCL1 (RW)</u>

0xC2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
CCL1										
8'h00										
RW										

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	CCL1	lower byte of CC1

 Bit 7
 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit0

 CCH1

 S'h00

 RW

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	CCH1	higher byte of CC1

<u>CCL2 (RW)</u>

0xC4

0xC3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
			CC	CL2			
			8'l	100			
			R	W			

Description of Word

Bit	Value	Symbol	Description				
7:0	8'h00	CCL2	lower byte of CC2				

<u>CCH2 (RW)</u>

0xC5

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
CCH2							
			8'1	n00			
RW							

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	CCH2	higher byte of CC2

<u>CCL3 (RW)</u>

.

0xC6

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
	CCL3								
			8'ł	100					
	RW								

Bit	Value	Symbol	Description	
7:0	8'h00	CCL3	lower byte of CC3	

<u>CCH1 (RW)</u>

0xC7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0	
	CCH3							
			8'1	100				
	RW							

Description of Word

Bit	Value	Symbol		Description
7:0	8'h00	CCH3	higher byte of CC3	

12.6.8 Compare/Reload/Capture register – CRCH, CRCL

CRC (Compare/Reload/Capture) register is a 16-bit wide register used by the Compare/Capture Unit associated with Timer 2. CRCHholds higher byte and CRCLholds lower byte.

CRCL (RW)

0xCA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
CRCL									
	8'h00								
			R	W					

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	CRCL	lower byte of CRC

CRCH (RW)

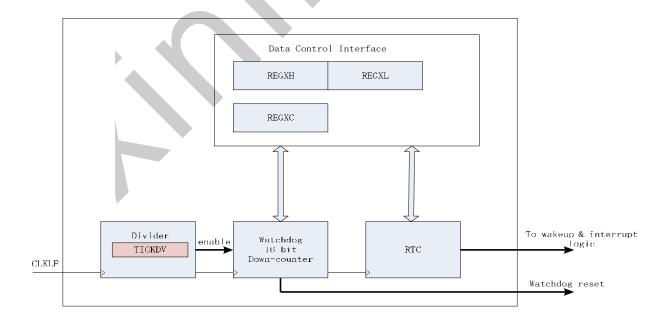
0xCB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0	
CRCH								
			8'ł	n00				
	RW							

Description of Word

			KT8P	01
Bit	Value	Symbol	Description	
7:0	8'h00	CRCH	higher byte of CRC	

13 Watchdog and RTC Wakeup Timer


In order to achieve the lowest possible average current consumption, the processor clock can be stopped under firmware control. Operation can be resumed (wakeup) on external events like toggling of GPIO pins or from the internal RTCwakeup timer, USB orthe RFIRQ.

In addition, a programmable watchdog timer can be enabled to reset the system if the software hangs.

13.1 Features

- 32 kHz operation
- Programmable 8-bit resolution for watchdog
- 16-bit range Watchdog
- Watchdog time range from 31.25us to 524s
- Watchdogcan disabled by power-on reset, a reset from pin or watchdog reset, or possibly when the chip enters theDeep Sleep and the Register retention power-saving mode.
- 24-bit range RTCwakeup timer
- RTC time range from 31.25us to 524s
- RTCwakeup timer only disabled by a power-on reset or a reset from pin, or by software
- Compare with WU (IRQ), Resolution: 31.25µs.
- Capture with increased resolution: 125ns.

13.2 Block diagram

13.3 Functional description

13.3.1 Watchdog

The tick is an interval (in CLKLF periods) that determines the resolution of the watchdog. By default the tick is set to 125μ s (4CLKLF cycles). The programmable range is from 31.25μ s to 8ms. The tick is as accurate as the 32 kHz source. The tick is controlled by the TICKDV register.

After a reset, the default state of the Watchdog is disabled. The Watchdog is activated when WDTCNT have been written. The watchdog register is loaded by writing a 16-bit value (number of ticks) to the two 8-bit data registers

(REGXH and REGXL) and then writing the correct op-code to the control register (REGXC). The watchdog counts down towards 0 and when 0 is reached the complete microcontroller, as well as the peripherals, are reset. A reset from the Watchdog will have the same effect as a power-on reset or a reset from pin except RTC Wakeup Timer module.

To avoid the reset, the software must reload WDTCNTsufficiently often. The Watchdog counter is updated with a new start value and restarted every time WDTCNTis written. If WDTCNT is loaded with 0x0000, The Watchdog WDTCNT= 0xffff is used.

The Watchdog timeout is given by:

$$\frac{WDTCNT*(TICKDV+1)}{32000}[s]$$

If the Watchdog has been started, it can only be disabled by a power-on reset, a reset from pin or watchdog reset, or possibly when the chip enters the Deep Sleep and the Register retention power-saving mode. Please refer to WCON bit 5 inIndirect addresses and functions table.

Note

1: If the CLKLF has been disabled by software, the Watchdog counter retains the value before the CLKLF stops and the Watchdog is activated, and when the CLKLF is enabled, the Watchdogcounts down from current value towards 0.

2: Only if the CLKLF keep on, the Watchdogcan be disabled by Watchdog reset or possibly when the chip enters the Deep Sleep and the Register retention power-saving mode.

13.3.2 RTC

RTC contains two registers that can be used for capturing timer values; one loaded at positive edge of the32kHzclock and another register clocked by the MCU clock for better resolution. Both registers are updated as a consequence of an external event. RTC can also give an interrupt at predefined intervals due to value equality between the timer and a compare register. RTC ensures that the functions the interrupt is used for are awoken prior to the interrupt. A wakeup interrupt and RTC timer interrupt are the same interrupt, and known which one is interrupted, please refer toPWRDWNregister bit 5 in 7.3.

The RTC timer is a 24-bit timer counting from zero and upwards at the rate of the32kHz clock. When the RTC timer is equal to the concatenation of RTCCMP1 and RTCCMP0, an RTC IRQ, also referred to as WU, is generated. There is an uncertainty of one CLKLF period, 30.25µs, from when the RTC is started or a new value is given to the RTC compare value registers and until the IRQ is given.

If compare mode 11 is used, the RTC IRQ will be given every

 $\frac{\left[\underline{RTCCMP1}: \underline{RTCCMP0}\right] + 1}{22000} (s)$ second.

The RTC compare value is updated every time RTCCMP1or RTCCMP0is written. This might give unwanted behavior if precaution is not taken when updating any of the variables. When new values are written to RTCCMP1 and RTCCMP0, the RTC IRQ should be disabled to prevent unwanted RTC IRQ.

The RTC counter uses the 32 kHz low frequency clock for the RTC timer, and the 32 kHz source must be enabled when using the RTC.

Note

1: The RTC can be disabled by a power-on resetor a reset from pin.

2: The RTC can be disabled by software only if the CLKLFis keep on.

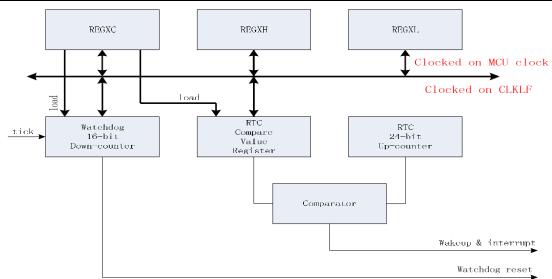
3: If the CLKLF has been disabled by software, the RTC timerretains the value before the CLKLF stops and the RTC is enabled, and when the CLKLF is enabled, the RTC timer counts up from current value.

Writing RTCCMP0and RTCCMP1:

Disable the RTC IRQ, until both registers have been written. •

Reading RTCCPT0and RTCCPT1:

Disable The Radio IRQ until both registers have been read.


Programming interface to watchdog and RTC functions 13.3.3

RTC and Watchdog are controlled through three SFRs. The three registers, REGXH, REGXL and, REGXC, are used to interface the blocks running on the slow CLKLF clock. The 16-bit register REGXH:REGXL can be written or read as two bytes from the MCU.

Typical sequences are:

Write: Write REGXH, Write REGXL, Write REGXC Read: Write REGXC, Read REGXH, Read REGXL

13.4 SFR registers

13.4.1 Tick calibration control register – TICKDV

TICKDV (RW)

0xB6

Bit 7	7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0							
	TICKDV							
			8']	h03				
	RW							

Description of Word

ſ	Bit	Value	Symbol	Description
	7:0	8'h03	TICKDV	Divider that is used ingenerating tick from CKLF frequency. $T_{tick} = (1 + TICDV) \overline{f_{CKLF}}$

13.4.2 Data register – REGXH REGXL

 REGXH (RW)
 0xB4

 Bit 7
 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit0

 REGXH

 REGXH

 RW

Description of Word

			KT8P01
Bit	Value	Symbol	Description
7:0	8'h00	REGXH	Most significant byte of16-bit data register

<u>REGXL (RW)</u>

0xB3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
REGXL										
8'h00										
RW										

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	REGXL	Least significant byte of16-bit data register

13.4.3 Control register – REGXC

REGXC (RW)

B5h

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reserved		Status	wr	Indirect address				
2't	000	1'b0	1'b0	4'b0000				
-	-	R	RW	RW				

Description of Word

.

Bit	Value	Symbol	Description
7:6	2'b00		Not used
5	0	Status	Status of last REGXC write access
			0:Finished
			1:Notfinished
4	0	wr	0:Read REGXH and REGXL register
			1:Write REGXH and REGXL register
3:0	4'b0000	Indirect address	Indirect address. See Indirect addresses and functions table

13.4.3.1 Indirect addresses and functions table

Indirect Address	Bit	R/W	Symbol	Description					
0000	15:0	RW	WDTCNT	Watchdog register (watchdog start value)					

.

KT8P01

0001	1211	DUU	WIGONIA	
0001	15:14	RW	WCON0	Wakeup enable/disable and edge selection of P07(P07_trig)
	13:12			Wakeup enable/disable and edge selection of P06(P06_trig)
	11:10			Wakeup enable/disable and edge selection of P05(P05_trig)
	9:8			Wakeup enable/disable and edge selection of P04(P04_trig)
	7:6			Wakeup enable/disable and edge selection of P03(P03_trig)
	5:4			Wakeup enable/disable and edge selection of P02(P02_trig)
	3:2			Wakeup enable/disable and edge selection of P01(P01_trig)
	1:0			Wakeup enable/disable and edge selection of P00(P00_trig)
				see Wakeup enable/disable and edge selection table
0010	15:14	RW	WCON1	Wakeup enable/disable and edge selection of P17(P17_trig)
	13:12			Wakeup enable/disable and edge selection of P16(P16_trig)
	11:10			Wakeup enable/disable and edge selection of P15(P15_trig)
	9:8			Wakeup enable/disable and edge selection of P14(P14_trig)
	7:6			Wakeup enable/disable and edge selection of P13(P13_trig)
	5:4			Wakeup enable/disable and edge selection of P12(P12_trig)
	3:2			Wakeup enable/disable and edge selection of P11(P11_trig)
	1:0			Wakeup enable/disable and edge selection of P10(P10_trig)
				see Wakeup enable/disable and edge selection table
0011	15:12			Reserved, do not use
	11:10	RW	WCON2	Wakeup enable/disable and edge selection of P21(P21_trig)
	9:8			Wakeup enable/disable and edge selection of P20(P20 trig)
				see Wakeup enable/disable and edge selection table
	7:0	RW	RTCCPM1	RTC compare value register 1
				Contains MSB partof the value to be compared to the timer value to
				generate RTC IRQ.
0100	15:0	RW	RTCCPM0	RTC compare value register 0
				Contains Least significant partof the value to be compared to the timer
				value to generate RTC IRQ. Resolution: 30.25µs.
0101	15:6		WCON	Reserved, do not use
	5	RW		Watchdog module reset enable
	C C			0: If the CLKLF is keep on, the on-chip watchdog functionality will keep
				running. If the CLKLF is stopped or gated, the watchdog will halt.
			<i>y</i>	1:If the CLKLF is keep on, the on-chip watchdog functionality will enter
				its reset state when the operational mode deep sleep or Register Retention
				is entered. If the CLKLF is stopped or gated, the watchdog will halt.
		DW		
	4	RW		Trigger signal.
				When the MCU writes a '1' to this register field, RTC will capture the timer value. The value is stored in PTCCPT0 and PTCCPT1 law bute. An
				timer value. The value is stored in RTCCPT0 and RTCCPT1 low byte. An
				additional counterclocked by the MCU clock will at this point contain the
				number of MCU clock cycles from the previous positive edge of the
				32.768 kHz clock (edge detect @ MCU clock). The value is stored in
				RTCCPT1 high byte.

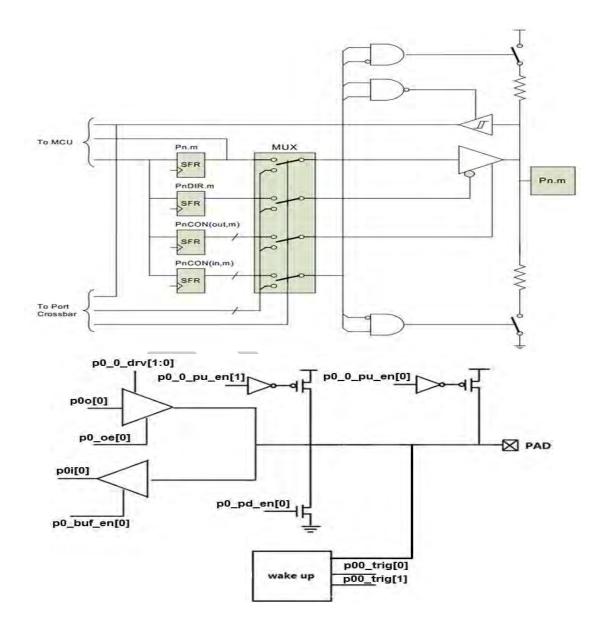
	3	RW		1:Timer value is captured if required by an IRQ from the Radio (edge
				detect @MCU clock). Thevalue is stored in RTCCPT0 and RTCCPT1 low
				byte. An additional counter clocked by the MCU clock will at this point
				contain the number of MCU clock cycles from the previous positive edge
				of the 32.768 kHz clock (edge detect@MCU clock). The value is stored in
				RTCCPT1 high byte.
				0:Capture by Radio disabled.
	2:1	RW		Compare mode.
				11:The RTCIRQ is assigned when the timer value is equal to RTC
				Timer.RTC ensures that the function for which the IRQ is intended, are all
				awoken prior to the RTC IRQ. When the RTC IRQ is assigned, the timer
				is reset.
				10:Same as above, except that the RTC IRQ will notreset the timer. The
				timer will always wrap around at overflow.
				0x:Compare disabled.
	0	RW		1: RTCis enabled. The clock to the RTC core functionality is running.
				0:RTCis disabled. The clock to the RTC core functionality stands still and
				the timer is reset.
0110	15:0	R	RTCCPT0	Contains Least significant of the timer value at the time of the capture
				event. Resolution: 30.25 µs.
0111	15:8	R	RTCCPT1	Contains the value of the counter that counts the number of MCU clock
				cycles from the previous positive edge of the 32 kHz clock until the
				capture event. The counter value is truncated by one bit (LSBit).
				Resolution: 125 ns.
	7:0			Contains MSB part of the timer value at the time of the capture event.
				Resolution: 30.25 µs.
1000~				Reserve
1111				

Note: The default values are 16'h0 of all indirect address registers

.

13.4.3.2 Wakeup enable/disable and edge selection table

name	description
P00 trig[1:0]	pin wake up control, P00_trig[1] for wake up enable, high active; P00_trig[0] for rise/fall edge detect,0 for rise,1
100_01g[1.0]	for fall
P01_trig[1:0]	pin wake up control, P01_trig[1] for wake up enable, high active; P01_trig[0] for rise/fall edge detect,0 for rise,1
roi_uig[1.0]	for fall
D02 trig[1:0]	pin wake up control, P02_trig[1] for wake up enable, high active; P02_trig[0] for rise/fall edge detect,0 for rise,1
P02_trig[1:0]	for fall
$\mathbf{D}02$ tria[1:0]	pin wake up control, P03_trig[1] for wake up enable, high active; P03_trig[0] for rise/fall edge detect,0 for rise,1
P03_trig[1:0]	for fall
P04_trig[1:0]	pin wake up control, P04_trig[1] for wake up enable, high active; P04_trig[0] for rise/fall edge detect,0 for rise,1


	for fall
P05_trig[1:0]	pin wake up control, P05_trig[1] for wake up enable, high active; P05_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P06_trig[1:0]	pin wake up control, P06_trig[1] for wake up enable, high active; P06_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P07_trig[1:0]	pin wake up control, P07_trig[1] for wake up enable, high active; P07_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P10_trig[1:0]	pin wake up control, P10_trig[1] for wake up enable, high active; P10_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P11_trig[1:0]	pin wake up control, P11_trig[1] for wake up enable, high active; P11_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P12_trig[1:0]	pin wake up control, P12_trig[1] for wake up enable, high active; P12_trig[0] for rise/fall edge detect, 0 for rise, 1 for fall
P13_trig[1:0]	pin wake up control, P13_trig[1] for wake up enable, high active; P13_trig[0] for rise/fall edge detect, 0 for rise, 1 for fall
P14_trig[1:0]	pin wake up control, P14_trig[1] for wake up enable, high active; P14_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P15_trig[1:0]	pin wake up control, P15_trig[1] for wake up enable, high active; P15_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P16_trig[1:0]	pin wake up control, P16_trig[1] for wake up enable, high active; P16_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P17_trig[1:0]	pin wake up control, P17_trig[1] for wake up enable, high active; P17_trig[0] for rise/fall edge detect, 0 for rise, 1 for fall
P20_trig[1:0]	pin wake up control, P20_trig[1] for wake up enable, high active; P20_trig[0] for rise/fall edge detect,0 for rise,1 for fall
P21_trig[1:0]	pin wake up control, P21_trig[1] for wake up enable, high active; P21_trig[0] for rise/fall edge detect,0 for rise,1 for fall

14 GPIO Purpose IO Port and Pin Assignment

The IO pins of the KT8P01 are default set to general purpose IO for the MCU. The numbers of available IOs are 18 for the KT8P01. The IO pins provide the input, output and inout function to communicate with other components. To filter out high frequency input noise, digital filters are provided.

14.1 Block diagram

14.2 Features

.

Digital filter for each pin

- Configurable Direction
- Configurable Drive Strength
 - > Output buffer on, normal drive strength
 - > Output buffer on, high drive strength
- Configurable Pull Up/Down
 - Input buffer on, no pull up/down resistor
 - Input buffer on, pull up resistor
 - Input buffer on, pull down resistor
 - Input buffer off

14.3 IO pin maps

The following conventions are used in all pin out maps:

- For dynamic connections and debug connections of digital peripheral blocks, the direction of each pin is indicated by 'in','out' or 'inout' next to the interface name.
- Normal mode, REG_DBG_SEL_0 and REG_DBG_SEL_1 registers must be set 8'h00.
- Lebug mode, REG_DBG_SEL_0 and REG_DBG_SEL_1 registers set value except 8'h00. Port0 and Port1 are used for debug.

.

KT8P01

P2.0	p2Di.0 T2	p2Do.0			SSCK	in	PWM4					
P1.7	p1Di.7	p1Do.7	MMISO	in					RF_SCK°	in		
P1.6	p1Di.6	p1Do.6	MMOSI	inout					RF_CSN ^c	in		
P1.5	p1Di.5	p1Do.5	MSCK	out					RF_MOSI ^c	in	USB D +	inout
P1.4	p1Di.4	p1Do.4	MCSN	out					RF_MISO ^c	out	USB D -	inout
P1.3	p1Di.3 G1	p1Do.3			SMOSI	in	PWM3		RF_CE ^c	in		
P1.2	p1Di.2 T1	p1Do.2			SCSN	in						
P1.1	p1Di.1 GPINT2	p1Do.1							RF_IRQ ^c	out		
P1.0	p1Di.0 TRCD	p1Do.0			FMISOª	out	MISO_SF ^b	in				
P0.7	p0Di.7 TRCC	p0Do.7			FMOSIª	in	MOSI_SF ^b	out	5			
P0.6	p0Di.6 TRCB	p0Do.6			FCSN ^a	in	CSN_SF ^b	out				
P0.5	p0Di.5 TRCA	p0Do.5			FSCK ^a	in	SCK_SF ^b	out	,			
P0.4	p0Di.4 UART/RXD	p0Do.4					PWM2	out				
P0.3	p0Di.3	p0Do.3 UART/TXD					PWM1	out				
P0.2	p0Di.2	p0Do.2					PWM0	out				
P0.1	p0Di.1 GPINT1	p0Do.1		*	G0	in						
P0.0	p0Di.0 GPINT0	p0Do.0			T0	in						

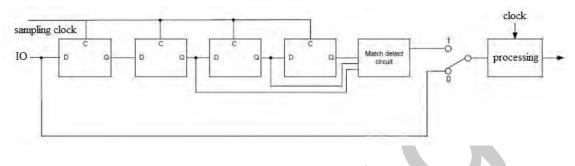
a. OTP SPI interface only activated when TEST is set higher than VIH for the TESTpin, and P0[3:0] must be set 4'b0000 more than 10us.

b. SFLASH SPI interface only activated when TEST is set higher than VIH for the TEST pin, and P0[3:0] must be set 4'b0001 more than 10us.

c. RF SPI interface only activated when TEST is set higher than VIH for the TEST pin, and P0[3:0] must be set 4'b0011 more than 10us.

•

14.4 IO pin Description


Pin	Description
P2.1	GPIO or output(SMISO) for slave SPI or output for PWM5
P2.0	GPIO or input(T2) for Timer2 event counter mode/gated mode or input(SCK) for slave SPI or output for PWM4
P1.7	GPIO or input(MMISO) for Master SPI
P1.6	GPIO or inout(MMOSI) for Master SPI
P1.5	GPIO or output(MSCK) for Master SPI
P1.4	GPIO or output(MCSN) for Master SPI
P1.3	GPIO or input(G1) for Timer1 to facilitate pulse widthmeasurement or input(SMOSI) for slave SPI or output PWM3
P1.2	GPIO or input(T1) for Timer1 counter mode or input(SCSN) for slave SPI
P1.1	GPIO or input(GPINT2) for external interrupt
P1.0	GPIO or input(TRCD) for Timer2 capture mode or output for Timer2 compare mode or output(FMISO) for OTP salve SPI or input (MISO_SF) for serial FLASH
P0.7	GPIO or input(TRCC) for Timer2 capture or output for Timer2 compare or input(FMOSI) for OTP slave SPI or output(MOSI_SF) for serial FLASH
P0.6	GPIO or input(TRCB) for Timer2 capture mode or output for Timer2 compare mode or input(FCSN) for OTP slave SPI or output(CSN SF) for serial FLASH
P0.5	GPIO or input(TRCA) for Timer2 capture mode or output for Timer2 compare mode or input(FSCK) for OTP slave SPI or output(SCK_SF) for serial FLASH
P0.4	GPIO or input(RXD) for UART or output for PWM2
P0.3	GPIO or output(TXD) for UART or output for PWM1
P0.2	GPIO or output for PWM0
P0.1	GPIO or input(GPINT1) for external interrupt or input(G1) for Timer0 to facilitate pulse widthmeasurement
P0.0	GPIO or input(GPINT0) for external interrupt or input(T0) for Timer0 counter mode

14.5 Functional description

14.5.1 Digital filter

The input signal is sampled, and the level is determined when three matches occur. Block Diagramof Digital Filter is shown in figure below. Registers CFG_DFEN_Px control the enable/disable of digital filter for each I/O pin. To enable the digital filter, set the corresponding bit to 1.

14.5.2 General purpose IO pin functionality

This functionality is multiplexed with the functionality of the PortCrossbar module which takescontrol and configures the pins depending on the needs of the peripheral block connected.

The pins on the KT8P01 are connected by default to a pin Multiplexer (MUX) that is connected to the GPIO registers of the MCU. Register Pn.m(n-port number, m-bitnumber) contains MCU GPIO data, PDIRn.mregister controls input/output direction and PCONn.mregister controls pin features drive strength and pull up/down resistors for each pin.

When the MCU enables one of the peripheral blocks of the KT8P01 the pin MUX disconnects the MCU control of the pin and hands control over to the PortCrossbar module to set direction and pin features.

The KT8P01 has one Pn.m, PnDIRmand PnCONnfor each port. Pn.mand PnDIRmcontrol only one parameter each, this means that a write/read operation to them controls/reads the status of the port directly. However, to control or read the features of a pin you use the PnCONmto write/read to one pin at a time. The PnCONregister contains an address for the pin, information on whether it is an input or an output feature that is to be updated and the feature that is to be enabled.

For example: If four pins in port 1 are set as inputs with the pull up resistor enabled, then this is done with one write to P1DIRand four write operations to P1CONand only updating the pin address in P1CONfor each write.

14.5.3 PortCrossbar functionality

The PortCrossbar sets up connections between the IO pins and the peripheral block of the device.

14.5.4 Dynamic allocation of pins

The PortCrossbar modifies connections dynamically based on run-time variations in system needs of the peripheral blocks of the device. This feature is necessary because the number of available pins is small compared to the combined IO needs of all the peripheral blocks. Consequently, there may be conflicting pin assignments. These are resolved through a set of priorities assigned to each peripheral block.

14.5.5 Dynamic pin allocation for digital blocks

Each digital peripheral block that needs an IO is represented in the pin out tables with the interface names of the block and the direction enforced on each pin. The priority of the blocks relative to potentially conflicting blocks is also shown. If the block is enabled, and no higher priority block is enabled, all the IO needs are granted.

14.5.6 Default pin allocation

If no peripheral blocks request IO, a default pinout as listed in the default column in the pin out maps are enabled. This means that all device pins are used for MCU GPIO. After reset, all pins are configured to be digital inputs. The features, direction and IO data on the pins are in this case controlled by registers PnCON, PnDIRandPn.

The default pin out also includes connections that are conditionally enabled based on the direction set for the pin.For example, if the P0DIRregister sets pin P0.4 as an input, it can be used as a MCU GPIO input and as the UART receiver. If pin P0.3 is programmed as an output, it can be connected to the MCU as a GPIO output, but also have conditional output from the UART/TXD through an AND gate.

14.5.7 Debug functionality

The KT8P01 has two debug select data registers (REG_DBG_SEL_0 and REG_DBG_SEL_1) for debug.REG_DBG_SEL_0 register controls Port0, and REG_DBG_SEL_1 controls Port1.Both the register default values are 8'h00. This means that all device pins are used for normal operation.

14.6 SFR registers

14.6.1 Control digital filter registers–CFG_DFEN_P0, CFG_DFEN_P1, CFG_DFEN_P2

Registers CFG_DFEN_Px control the enable/disable of digital filter for each I/O pin. To enable the digital filter, set the corresponding bit to 1.

<u>CFG DFEN PO (RW)</u>			0xE1						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0		
P07_EN	P06_EN	P05_EN	P04_EN	P03_EN	P02_EN	P01_EN	P00_EN		

| 1'b0 |
|------|------|------|------|------|------|------|------|
| RW |

Description of Word

Bit	Value	Symbol	Description
7	1'b0	P07_EN	Enable bit for digital filter
			1:enable
			0:disable
6	1'b0	P06_EN	Enable bit for digital filter
			1:enable
			0:disable
5	1'b0	P05_EN	Enable bit for digital filter
			1:enable
			0:disable
4	1'b0	P04_EN	Enable bit for digital filter
			1:enable
			0:disable
3	1'b0	P03_EN	Enable bit for digital filter
			1:enable
			0:disable
2	1'b0	P02_EN	Enable bit for digital filter
			1:enable
			0:disable
1	1'b0	P01_EN	Enable bit for digital filter
			1:enable
			0:disable
0	1'b0	P00_EN	Enable bit for digital filter
			1:enable
			0:disable

CFG DFEN P1 (RW)

0xE2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
P17_EN	P16_EN	P15_EN	P14_EN	P13_EN	P12_EN	P11_EN	P10_EN
1'b0							
RW							

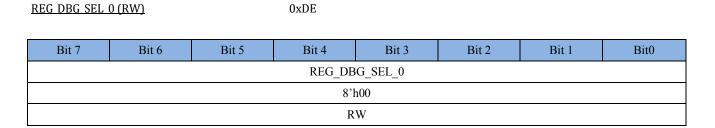
Description of Word

Bit Value Symbol Description

7	1'b0	P17_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
6	1'b0	P16_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
5	1'b0	P15_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
4	1'b0	P14_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
3	1'b0	P13_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
2	1'b0	P12_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
1	1'b0	P11_EN	Enable bit for digital filter			
			1:enable			
			0:disable			
0	1'b0	P10_EN	Enable bit for digital filter			
			1:enable			
			0:disable			

<u>CFG DFEN P2 (RW)</u>

0xE3


Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
		RW	RW				

Description of Word

Bit	Value	Symbol	Description	
7:2			Not used	
1	1'b0	P21_EN	Enable bit for digital filter	
			1:enable	
			0:disable	
0	1'b0	P20_EN	Enable bit for digital filter	
			1:enable	
			0:disable	

14.6.2 Debug select data registers – REG_DBG_SEL_0, REG_DBG_SEL_1

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	REG_DBG_SEL_0	Debug select data register 0

 REG DBG SEL 1 (RW)
 0xDF

 Bit 7
 Bit 6
 Bit 5
 Bit 4
 Bit 3
 Bit 2
 Bit 1
 Bit0

 REG_DBG_SEL_1

 8'h00

 RW

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	REG_DBG_SEL_1	Debug select data register 1

14.6.3 Directioncontrol registers — P0DIR · P1DIR · P2DIR

Desired pin direction and functionality is configured using the configuration registers P0DIR, P1DIR. The PortCrossbar by default (at reset) configures all pins as inputs and connects them to the MCU GPIO.

<u>P0DIR (RW)</u>

0x93

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
dir7	dir6	dir5	dir4	dir3	dir2	dir1	dir0
1'b1	1'b1						
RW	RW						

Description of Word

Bit	Value	Symbol	Description
-----	-------	--------	-------------

7	1'b1	dir7	Direction bit for pin P0.7
			1:input
			0:output
6	1'b1	dir6	Direction bit for pin P0.6
			1:input
			0:output
5	1'b1	dir5	Direction bit for pin P0.5
			1:input
			0:output
4	1'b1	dir4	Direction bit for pin P0.4
			1:input
			0:output
3	1'b1	dir3	Direction bit for pin P0.3
			1:input
			0:output
2	1'b1	dir2	Direction bit for pin P0.2
			1:input
			0:output
1	1'b1	dir1	Direction bit for pin P0.1
			1:input
			0:output
0	1'b1	dir0	Direction bit for pin P0.0
			1:input
			0:output

<u>P1DIR (RW)</u>

0x94

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
dir7	dir6	dir5	dir4	dir3	dir2	dir1	dir0
1'b1	1'b1						
RW	RW						

Description of Word

Bit	Value	Symbol	Description
7	1'b1	dir7	Direction bit for pin P1.7
			1:input
			0:output
6	1'b1	dir6	Direction bit for pin P1.6
			1:input
			0:output

5	1'b1	dir5	Direction bit for pin P1.5			
			1:input			
			D:output			
4	1'b1	dir4	Direction bit for pin P1.4			
			1:input			
			0:output			
3	1'b1	dir3	Direction bit for pin P1.3			
			1:input			
			0:output			
2	1'b1	dir2	Direction bit for pin P1.2			
			1:input			
			0:output			
1	1'b1	dir1	Direction bit for pin P1.1			
			1:input			
			0:output			
0	1'b1	dir0	Direction bit for pin P1.0			
			1:input			
			0:output			

P2DIR (RW)

0x95

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0	
		dir1	dir0					
	.							

Description of Word

.

Bit	Value	Symbol	Description
7:2		-	Not used
1	1'b1	dir1	Direction bit for pin P2.1
			1:input
			0:output
0	1'b1	dir0	Direction bit for pin P2.0
			1:input
			0:output

14.6.4 The input and output options registers — P0CON,P1CON,P2CON

The input and output options of each pin are configured in the PnCON registers. The PnCON registers have to be written once per pin (one write operation to the PnCON register configures the input/output options of a selected pin in the port).

To read the current input or output options for a pin, you first need to perform a write operation to retrieve the desired bit address and option type (input or output).

For example, to read the output mode of pin P0.5: Write to P0CONwith a bitAddr value of 101, a readAddr value of 1 and ainOut value of 0 (output). Then read from P0CON. The output mode of pin 5 is now found in bits 6:5 of the read data.

<u>P0CON (RW)</u>

0x9E

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	pinMode		inOut	readAddr	bitAddr		
	3'b000/3'b001		1'b0	1'b0	3'b000		
	RW		RW	W	RW		

Description of Word

Bit	Value	Symbol	Description		
7:5	3'b000/	pinMode	Functional input or output mode for pins P0.0- P0.7.For a write operation: The functional		
	3'b001		mode you would like to write to the pin. The inOut field determines if the input or outp		
			mode is written, the bitAddr field determines which pin is affected.		
			Output modes using bits 6:5(bit 7 Reserved)		
			00 lowest driver capability		
			01 low driver capability		
			10 high driver capability		
			11 highest driver capability		
			Input modes using bits 7:5		
			00 Digital input buffer on, no pull up/down resistors		
			01 Digital input buffer on, pull down resistor connected(default)		
			010 Digital input buffer on, pull up150kresistor connected(2M for P0.1)		
			011 Digital input buffer on, pull up30kresistor connected		
			other Digital input buffer off		
			For a read operation: The current functional mode of the pin. The inOut field determines if		
			the input or output mode is reported, while the bitAddr field indicates which pin is selected.		
4	1'b0	inOut	This bit indicates if the current write operation relates to the input or output configuration		
			of the addressed pin.		
			inOut = 0 - Operate on the output configuration		
			inOut = 1 – Operate on the input configuration		
3	1'b0	readAddr	If this bit is set, the purpose of the current write operation is to provide the bit address for		
			later read operations. Consequently, the value of the bitAddr field is saved. The value of the		
			inOut field is also saved, determining if the input or output mode is to be read. The		
			pinMode field is ignored when readAddr is set. If this bit is not set, the pin mode of the		
			addressed pin is updated with the value of the pinMode field. The inOut field determines if		
			the input or output mode is updated.		

2:0	3'b000	bitAddr	If the readAddr bit is set, the value of the bitAddr field is stored. For subsequent read
			operations from POCON, the pin for which the pinMode will be returned is given by the list
			below.
			bitAddr = 000 - P0.0
			bitAddr = 001 - P0.1
			bitAddr = 010 - P0.2
			bitAddr = 011 - P0.3
			bitAddr = 100 - P0.4
			bitAddr = 101 - P0.5
			bitAddr = 110 - P0.6
			bitAddr = 111 - P0.7

<u>P1CON (RW)</u>

0x9F

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	pinMode		inOut	readAddr	bitAddr		
	3'b000/3'b001		1'b0	1'b0	3'b000		
	RW		RW	W	RW		
Description of V	Vord				5		

Description of Word

Bit	Value	Symbol	Description	
		Symbol		
7:5	3'b000/	pinMode	Functional input or output mode for pins P0.0- P0.7.For a write operation: The functional	
	3'b001		mode you would like to write to the pin. The inOut field determines if the input or output	
			mode is written, the bitAddr field determines which pin is affected.	
			Output modes using bits 6:5(bit 7 Reserved)	
			00 lowest driver capability	
			01 low driver capability	
			10 high driver capability	
			11 highest driver capability	
			Input modes using bits 7:5	
			000 Digital input buffer on, no pull up/down resistors	
			001 Digital input buffer on, pull down resistor connected(default)	
			010 Digital input buffer on, pull up150kresistor connected(2M for P1.1, P1.6 and P1.7;	
			1.5k for P1.4 and P1.5)	
		V	011 Digital input buffer on, pull up30kresistor connected	
			100 Reserved	
			101 Reserved	
			110 Reserved	
			111 Digital input buffer off	
			For a read operation: The current functional mode of the pin. The inOut field determines if	
			the input or output mode is reported, while the bitAddr field indicates which pin is selected.	

4	1'b0	inOut	This bit indicates if the current write operation relates to the input or output configuration
			of the addressed pin.
			inOut = 0 - Operate on the output configuration
			inOut = 1 - Operate on the input configuration
3	1'b0	readAddr	If this bit is set, the purpose of the current write operation is to provide the bit address for
			later read operations. Consequently, the value of the bitAddr field is saved. The value of the
			inOut field is also saved, determining if the input or output mode is to be read. The
			pinMode field is ignored when readAddr is set. If this bit is not set, the pin mode of the
			addressed pin is updated with the value of the pinMode field. The inOut field determines if
			the input or output mode is updated.
2:0	3'b000	bitAddr	If the readAddr bit is set, the value of the bitAddr field is stored. For subsequent read
			operations from P1CON, the pin for which the pinMode will be returned is given by the list
			below.
			bitAddr = 000 - P1.0
			bitAddr = 001 - P1.1
			bitAddr = 010 - P1.2
			bitAddr = 011 - P1.3
			bitAddr = 100 - P1.4
			bitAddr = 101 - P1.5
			bitAddr = 110 - P1.6
			bitAddr = 111 - P1.7

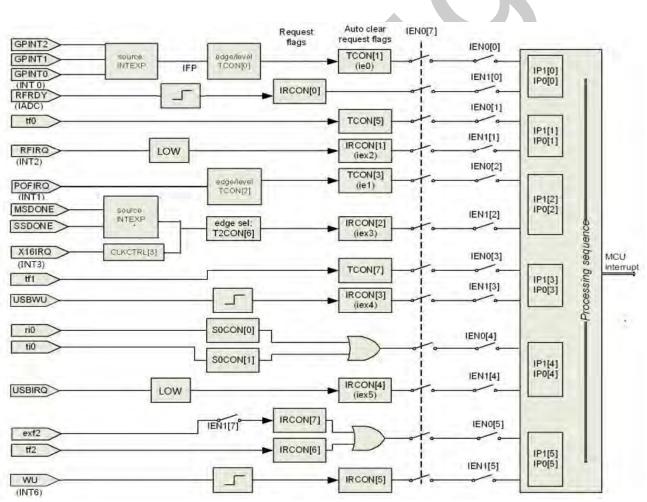
P2CON(RW)

P2CON(RW) 0x97							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	pinMode			readAddr	bitAddr		
3'b000/3'b001			1'b0	1'b0	3'b000		
RW			RW	W		RW	

Description of Word

Bit	Value	Symbol	Description

X			KT8P01
7:5	3'b000/	pinMode	Functional input or output mode for pins P0.0- P0.7.For a write operation: The functional
	3'b001		mode you would like to write to the pin. The inOut field determines if the input or output
			mode is written, the bitAddr field determines which pin is affected.
			Output modes using bits 6:5(bit 7 Reserved)
			00 lowest driver capability
			01 low driver capability
			10 high driver capability
			11 highest driver capability
			Input modes using bits 7:5
			00 Digital input buffer on, no pull up/down resistors
			01 Digital input buffer on, pull down resistor connected(default)
			010 Digital input buffer on, pull up150k resistor connected
			011 Digital input buffer on, pull up 30kresistor connected
			100 Reserved
			101 Reserved
			110 Reserved
			111 Digital input buffer off
			For a read operation: The current functional mode of the pin. The inOut field determines if
			the input or output mode is reported, while the bitAddr field indicates which pin is selected.
4	1'b0	inOut	This bit indicates if the current write operation relates to the input or output configuration
			of the addressed pin.
			inOut = 0 - Operate on the output configuration
			inOut = 1 - Operate on the input configuration
3	1'b0	readAddr	If this bit is set, the purpose of the current write operation is to provide the bit address for
			later read operations. Consequently, the value of the bitAddr field is saved. The value of the
			inOut field is also saved, determining if the input or output mode is to be read. The
			pinMode field is ignored when readAddr is set. If this bit is not set, the pin mode of the
			addressed pin is updated with the value of the pinMode field. The inOut field determines if
			the input or output mode is updated.
2:0	3'b000	bitAddr	If the readAddr bit is set, the value of the bitAddr field is stored. For subsequent read
			operations from P2CON, the pin for which the pinMode will be returned is given by the list
			below.
			bitAddr = 000 - P2.0
			bitAddr = 001 - P2.1
			other not used


15 Interrupt

KT8P01 has an advanced interrupt controller with 16 sources, as shown in Figure 1. The unit manages dynamic program sequencing based upon important real-time events as signaled from timers, the RF transceiver, pin activity, and so on.

15.1 Feature

- Interrupt controller with 16 sources and 4 priority levels
- Interrupt request flags available
- Interrupt from pin (configurable)

15.2 Block diagram

Block diagram of interrupt structure

15.3 Functional description

When an enabled interrupt occurs, the MCU vectors to the address of the interrupt service routine (ISR) associated with that interrupt, as listed inTable 1. The MCU executes the ISR to completion unless another interrupt of higher priority occurs.

Source	vector	Polarity	Description	
IFP	0x0003	low/fall	Interrupt from pin GPINT0, GPINT1 or GPINT2 as selected by bits 3,4 or 5 in SFR	
			INTEXP. Only one of the bits may be set at a time.	
Tf0	0x000B	high	Timer 0 overflow interrupt	
POFIRQ	0x0013	low/fall	Power Failure interrupt	
tfl	0x001B	high	Timer 1 overflow interrupt	
ri0	0x0023	high	Serial channel receive interrupt	
ti0	0x0023	high	Serial channel transmit interrupt	
tf2	0x002B	high	Timer 2capture/compare or overflow interrupt	
exf2	0x002B	high	Timer 2 external reload	
RFRDY	0x0043	rise	RF SPI ready	
RFIRQ	0x004B	low	RF interrupt	
MSDONE	0x0053	fall/rise	Master SPI transaction completed	
SSDONE	0x0053	fall/rise	Slave SPI transaction completed	
X16IRQ	0x0053	fall/rise	XOSC16M started (X16IRQ)	
USBWU	0x005B	rise	USB wakeup interrupt	
USBIRQ	0x0063	low	USB interrupt	
WU	0x006B	rise	Internal RTC Wakeup interrupt	

KT8P01 interrupt sources

Note: RFIRQ, X16IRQ and WU are not activated unless wakeup is enabled by WUCON (see section power and clock management).

15.4 SFR registers

Various SFR registers are used to control and prioritize between different interrupts.

The TCON, IRCON, IP1, IEN0, IEN1 and INTEXP are described in this section. In addition the TCON and T2CON are used, the description for these registers can be found in section Timers/Counters. S0CON is descripted in section Serial port.

15.4.1 Interrupt Enable 0 Register – IEN0

The IEN0 register is responsible for global interrupt system enabling/disabling and also Timer 0, 1 and 2, Port 0 and Serial Port individual interrupts enabling/disabling.

Address	Reset value	Bit	Description
0xA8	0x00	7	1: Enable interrupts. 0: all interrupts are disabled
		6	Not used
		5	1: Enable Timer2 (tf2/exf2) interrupt

	4	1: Enable Serial Port (ri0/ti0) interrupt
	3	1: Enable Timer1 overflow (tf1) interrupt
	2	1: Enable Power failure (POFIRQ) interrupt
	1	1: Enable Timer0 overflow (tf0) interrupt
	0	1: Enable Interrupt From Pin (IFP) interrupt
-		

IEN0 register

15.4.2 Interrupt Enable 1 Register – IEN1

The IEN1 register is responsible for RF, SPI and Timer 2 interrupts.

Address	Reset value	Bit	Description
0xB8	0x00	7	1: Enable Timer2 external reload (exf2) interrupt
		6	Not used
		5	1: Internal wakeup (WU) interrupt enable
		4	1: USB interrupt enable
		3	1: USB wakeup interrupt enable
		2	1:SPI master/slave completed (MSDONE/SSDONE) interrupt enable, XOSC16M started
			(X16IRQ) interrupt enable
		1	1: RF (RFIRQ) interrupt enable
		0	1: RF SPI ready (RFRDY) interrupt enable

IEN1 register

2-Wire Master SPI and Slave SPI share the same interrupt line

Address	Reset value	Bit	Description			
0xA6	0x01	7:6	Not used			
		5	1: Enable GP INT2 (from pin) to IFP			
		4	1: Enable GP INT1 (from pin)1 to IFP			
		3	1: Enable GP INT0 (from pin) 0 to IFP			
		2	Not used			
		1	1: Enable Master SPI completed (MSDONE)interrupt			
		0	1: Enable Slave SPI completed (SSDONE) interrupt			
	INTEXP register					

15.4.3 Interrupt Priority Registers – IP0, IP1

The 17 interrupt sources are grouped into six priority groups. For each of the groups, one of four priority levels can be selected. They can be selected by setting appropriate values in IP0 and IP1 registers.

The contents of the Interrupt Priority registers define the priority levels for each interrupt source according to the tables below.

Address	Reset value	Bit	Description
0xA9	0x00	7:6	Not used
		5:0	Interrupt priority. Each bit together with corresponding bit from IP1 register specifies the priority level of the respective interrupt priority group.

IP0 register

Address	Reset value	Bit	Description
0xB9	0x00	7:6	Not used
		5:0	Interrupt priority. Each bit together with corresponding bit from IPO register specifies the
			priority level of the respective interrupt priority group.

IP1 register

Group	Interrupt bits	Priority group		
0	IP1[0], IP0[0]	IFP		RFRDY
1	IP1[1], IP0[1]	Timer 0 interrupt		RFIRQ
2	IP1[2], IP0[2]	POFIRQ		MSDONE/SSDONE/X16IRQ
3	IP1[3], IP0[3]	Timer 1 interrupt		USB wakeup
4	IP1[4], IP0[4]	ri0/ ti0		USB interrupt
5	IP1[5], IP0[5]	tf2/exf2		WU

Priority groups

IP1.x	IP0.x	Priority level
0	0	Level 0 (lowest)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest)

Priority levels (x is the number of priority group)

15.4.4 Interrupt Request Control Registers – IRCON

The IRCON register contains interrupt request flags.

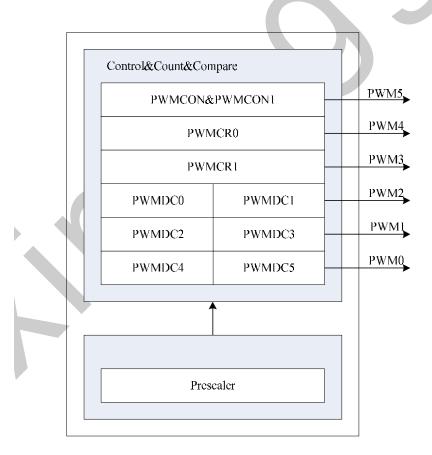
Address	Reset value	Bit	Auto clear ^a	Description
0xC0	0x00	7		Timer 2 external reload (exf2) interrupt flag
		6	Yes	Timer 2 capture/compare or overflow (tf2) interrupt flag ^b
		5	Yes	Internal wakeup (TICK) interrupt flag
		4		USB interrupt flag

	3	Yes	USB wakeup interrupt flag
	2	Yes	Master/Slave SPI(MSDONE/SSDONE), XOSC16M started (X16IRQ) interrupt flag
	1		RF (RFIRQ) interrupt flag
	0		RF SPI ready (RFRDY) interrupt flag

a: Auto clear means that the flag is cleared by hardware automatically when the corresponding service routine is vectored.

b: The flag will be cleared by hardware, but need to be clear the correspondingflag(refer to T2SR register) by software.

IRCON register


16 PWM

The KT8P01 includes a six channel Pulse-Width Modulation (PWM) module. The six channels (PWM0, PWM1, PWM2, PWM3, PWM4 and PWM5) share a common enable/disable PWM and frequency pre-scale factor register, a period setting register, acontrolled Initial level register and a controlledactive level register, and have an individually controlled active level width register. The six PWM waveforms are the sameperiod, and can have differentInitial level, active level and inactivelevel width.

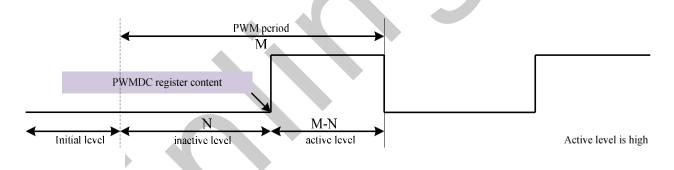
16.1 Features

- Six-channel output
- Frequency-range from 2KHz to 8 MHz
- Compact control using few registers for enabling, frequencypre-scale, period, Initial level, active level and inactive levelwidth

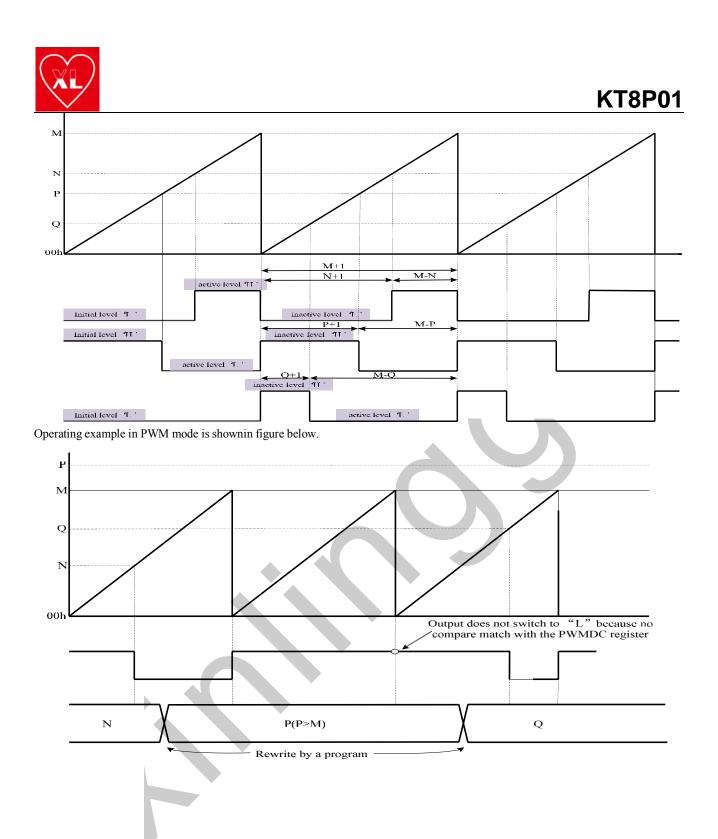
16.2 Block diagram

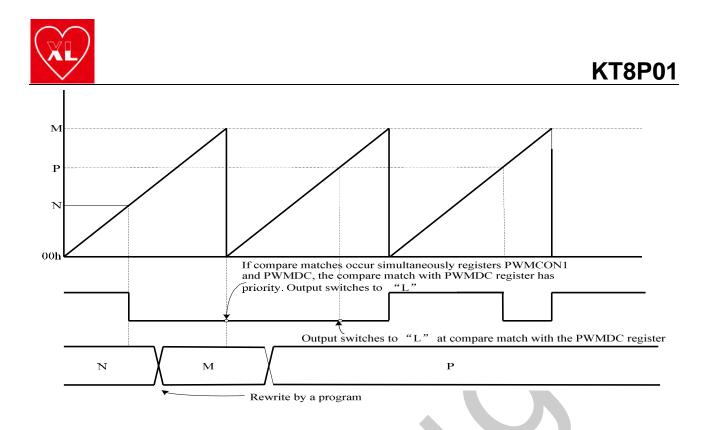
16.3 Functional description

The KT8P01 PWM is a six-channel PWM with a tenregisters interface. The first registerPWMCONenables or disables the PWM function and sets the PWM frequency pre-scale factor. The register PWMCON1 sets the PWM period length, which is the number of



counter clock cycles for one PWM period. The registerPWMCR0 controls the PWM initial level. The register PWMCR1 controls the PWM active level. The registers, PWMDC0, PWMDC1, PWMDC2, PWMDC3, PWMDC4 and PWMDC5 control theinactive level for each PWM channel.


If you disable one of the six PWMs, the PWM outputpin retains the inactive level after the output is changed by matching the period. The following table shows how the PWMis controlled by the PWM SFR registers. Frequency-range is approximately2KHz-8MHz.


Item	Specification			
Count source	1/1, 1/2, 1/8, 1/32of PWM clock (PWMCON)			
Count operation	Increment			
PWM waveform	PWM period: $1/\text{frq} \times (M + 1)$			
	Active level width: $1/\text{frq} \times (M-N)$			
	Inactive width: $1/\text{frq} \times (N+1)$			
	frq: Frequency of count source			
	M: Valueset in PWMCON1 register			
	N:Value set in PWMDCjregister $(j = 0, 1, 2, 3, 4, 5)$			
	refer to the following figure			
Selectable functions	Initial level selectable for each individual pin (PWMCR0)			
	Active level selectable for each individual pin (PWMCR1)			

Upon matching PWMDC register contents, the output signal changes frominactive level toactive level. It goes back to inactive level bymatchingthe period (refer to the PWMCON1 registercontent).

Operating example in PWM mode is shownin figure below.

16.4 SFR registers

16.4.1 PWM control register-PWMCON

The PWMCONenables or disables the PWM function and sets the PWM frequency pre-scale factor.

PWMCON (RW)

0x32

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
pre-scale		en_5	en_4	en_3	en_2	en_1	en_0
2'b00		1'b0	1'b0	1'b0	1'b0	1'b0	1'b0
RW		RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description			
7:6	2'b00	pre-scale	Frequencypre-scale factor			
			00: 1/1 clock			
			01: 1/2 clock			
			10: 1/8 clock			
			11: 1/32 clock			
5	1'b0	en_5	Enable bit for channel 5(pwm5)			
			1:enable			
			0:disable			

4	1'b0	en_4	Enable bit for channel 4(pwm4)				
			1:enable				
			0:disable				
3	1'b0	en_3	Enable bit for channel 3(pwm3)				
			1:enable				
			0:disable				
2	1'b0	en_2	Enable bit for channel 2(pwm2)				
			1:enable				
			0:disable				
1	1'b0	en_1	Enable bit for channel 1(pwm1)				
			1:enable				
			0:disable				
0	1'b0	en_0	Enable bit for channel 0(pwm0)				
			1:enable				
			0:disable				

16.4.2 PWM frequency pre-scale factor register-PWMCON1

The register PWMCON1 sets the PWM period length, which is the number of clock cycles for one PWM period.

PWMCON1 (RW)

0xDA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
pwm_prd										
	8'h00									
			R	W						

Description of Word

Bit	Value	Symbol	Description
7:00	8'h00	pwm_prd	PWM period length

16.4.3 PWM control initial and active level register-PWMCR0, PWMCR1

The register PWMCR0 and PWMCR1 controls the PWM initial and active level.

<u>PWMCR0 (RW)</u>

0xD9

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
		Initial_ctl5	Initial_ctl4	Initial_ctl3	Initial_ctl2	Initial_ctl1	Initial_ctl0
2'b00		1'b0	1'b0	1'b0	1'b0	1'b0	1'b0

					۲	(T8P01
	RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description
7:6	2'b00		Not used
5	1'b0	Initial_ctl5	Initial output selected bit for channel 5(pwm5)
			1: Initial output selected as active level
			0: Initial output selected as non-active level
4	1'b0	Initial_ctl4	Initial output selected bit for channel 4(pwm4)
			1: Initial output selected as active level
			0: Initial output selected as non-active level
3	1'b0	Initial_ctl3	Initial output selected bit for channel 3(pwm3)
			1: Initial output selected as active level
			0: Initial output selected as non-active level
2	1'b0	Initial_ctl2	Initial output selectedbit for channel 2(pwm2)
			1: Initial output selected as active level
			0: Initial output selected as non-active level
1	1'b0	Initial_ctl1	Initial output selected bit for channel 1(pwm1)
			1: Initial output selected as active level
			0: Initial output selected as non-active level
0	1'b0	Initial_ctl0	Initial output selected bit for channel 0(pwm0)
			1: Initial output selected as active level
			0: Initial output selected as non-active level

PWMCR1 (RW)

0xD4

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
		active_ctl5	active_ctl4	active_ctl3	active_ctl2	active_ctl1	active_ctl0
2'b00		1'b1	1'b1	1'b1	1'b1	1'b1	1'b1
		RW	RW	RW	RW	RW	RW

Description of Word

Bit	Value	Symbol	Description			
7:6	2'b00		Not used			
5	1'b1	active_ctl5	Active output selected bit for channel 5(pwm5)			
			1:output level selected as high active			
			0:output level selected as low active			
4	1'b1	active_ctl4	Active output selected bit for channel 4(pwm4)			
			1:output level selected as high active			
			0:output level selected as low active			

3	1'b1	active_ctl3	Active output selected bit for channel 3(pwm3)			
			1:output level selected as high active			
			0:output level selected as low active			
2	1'b1	active_ctl2	Active output selected bit for channel 2(pwm2)			
			1:output level selected as high active			
			0:output level selected as low active			
1	1'b1	active_ctl1	Active output selected bit for channel 1(pwm1)			
			1:output level selected as high active			
			0:output level selected as low active			
0	1'b1	active_ctl0	Active output selected bit for channel 0(pwm0)			
			1:output level selected as high active			
			0:output level selected as low active			

16.4.4 PWM control the inactive level width registers-PWMDC0, PWMDC1,

PWMDC2,PWMDC3,PWMDC4,PWMDC5

The registersPWMDC0, PWMDC1, PWMDC2, PWMDC3,PWMDC4 and PWMDC5 control the inactive level widthfor each PWM channel.

PWMDC0 (RW)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0			
pwmdc0										
	8'h00									
RW										

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	pwmdc0	PWM inactive level width control for channel 0

<u>PWMDC1 (RW)</u>

0xA2

0xA1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
pwmdc1							
	8'h00						
RW							

Description of Word

\sim
XL
\sim

Bit	Value	Symbol	Description
7:0	8'h00	pwmdc1	PWM inactive level width control for channel 1

PWMDC2 (RW)

0xB7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
pwmdc2							
	8'h00						
	RW						

Description of Word

Bit	Value	Symbol	Description
7:0	8'h00	pwmdc2	PWM inactive level width control for channel 2

<u>PWMDC3 (RW)</u>		0xD5					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
	pwmdc3						
			8'l	h00			
			R	W			

Description of Word

Bit	Value	Symbol	Description			
7:0	8'h00	pwmdc3	PWM inactive level width control for channel 3			

PWMDC4 (RW)

0xD6

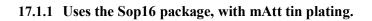
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0
pwmdc4							
	8'h00						
	RW						

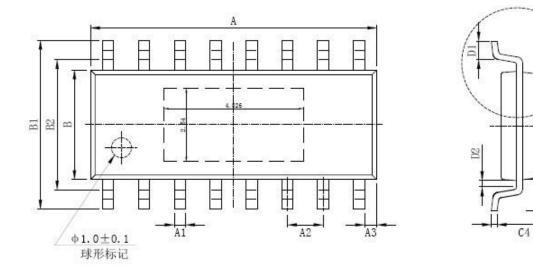
Description of Word

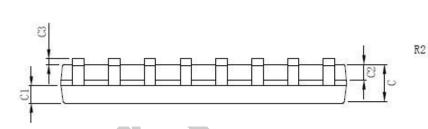
Bit	Value	Symbol	Description
7:0	8'h00	pwmdc4	PWM inactive level width control for channel 4

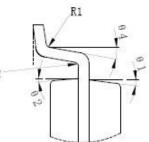
<u>PWMDC5 (RW</u>	1		0xD7				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit0

pwmdc5
8'h00
RW


Description of Word


Bit	Value	Symbol	Description	
7:0	8'h00	pwmdc5	PWM inactive level width control for channel 5	




.

17 Package size

尺寸 标注	最小(mm)	最大(mm)	 尺寸	最小(mm)	最大(mm)
A	9.80	10.00	C4	0.203	0. 233
A1	0.356	0.456	D	1.05TYP	
A2	1.2	7TYP	D1	0.40	0.70
A3	0. 302TYP		D2	0.15	0.25
В	3.85	3.95	R1	0. 20TYP	
B1	5.84	6.24	R2	0. 20TYP	
B2	5.0	OTYP	θ 1	$8^\circ \sim 12^\circ$ TYP4	
С	1.35	1.55	θ 2	$8^\circ \sim 12^\circ$ TYP4	
C1	0.61	0.71	θ 3	$0^{\circ} \sim 8^{\circ}$	
C2	0.54	0.64	θ 4	$4^\circ~\sim~12^\circ$	
C3	0.10	0.25	30		

.

Contact Information

Shenzhen core ridge technology Co., LTD Room 1416, Unit 2, Junlan Building, 1233 Guihua Community Sightseeing Road, Guanlan Street, Longhua District, Shenzhen Tel: +86-0755-32866130 E-mail: zhouhy@xinlinggo.com