XL2400P 一对多 多对一使用笔记

说明: 2.4G 通信收发双方需要地址、频点、数据宽度和管道一致,这也是实现一对多和多对一的关键。

1. 一个发送对多个接收

一个发送对多个接收,可以改变地址和频点两种方式实现,也可以是不同的频点+不同的地址实现。

硬件最多支持 6 个数据通道,通道 0~通道 5,数据通道 0 的地址可以与其他 5 个完全不一样,数据通道 1~5 的地址有要求,高 4 位必须保持一致,第 5 位可以变化。

	Byte 4	Byte 3	Byte 2	Byte 1	Byte 0
Data pipe O(RX ADDR PO)	0xF1	0xD2	0xE6	0xA2	0x33
Data pipe o(RA_RDDR_1 o)	OAI I	ONDE	OALO	OANZ	0,000
Data pipe 1(RX_ADDR_P1)	0xD3	0xD3	0xD3	0xD3	0xD3
	1	1	1	Ţ	
Data pipe 2(RX_ADDR_P2)	0xD3	0xD3	0xD3	0xD3	0xD4
	1	1	1	Ţ	
Data pipe 3(RX_ADDR_P3)	0xD3	0xD3	0xD3	0xD3	0xD5
	1	ļ	1	1	
Data pipe 4(RX_ADDR_P4)	0xD3	0xD3	0xD3	0xD3	0xD6
	Ţ		1	1	
Data pipe 5(RX_ADDR_P5)	0xD3	0xD3	0xD3	0xD3	0xD7

从表中可以看 数据通道 0 的 5byte 总共 40 位的地址都是可配的;数据通道 1^5 的地址配置为 32 位共用地址(不数据通道 1 共用)+8 位各自的地址(最低字节)。

所以为了实现更多的通信,选择数据通道 0 来进行通信,这样地址的选择才最多。

也可以是改变频点来实现一对多,也就是每个接收分配一个频点。

```
//设置频点
void RF_Set_Chn(unsigned char Chn)

{
    SPI_Write_Reg(W_REGISTER + EN_AA, 0x00);
    SPI_Write_Reg(W_REGISTER + RF_CH, Chn + 0x60);
    SPI_Write_Reg(W_REGISTER + EN_AA, 0x40);
}
```

严格意义上说并不是一对多,因为发送的数据不是在同一时刻发出,而是发送完一次数据后,马上改变地址或者频点,发送给下一个接收,依次发送给所有的接收,因为发一次数据时间为毫秒级,在一定程度上可以理解为实现一对多发送数据。而且这种方式实现的一对多通信是可控的,发送端可以任意改变发送的数据和选择接收的对象。

如果接收不需要可控,也就是发送方发送一次数据,所有的接收都收到一次一样的的数据,那就可以将所有接收配置为一模一样的参数,也就是所有接收烧录同一份普通接收程序,这样实现的就是严格意义上的一对多,发射一次,所有的接收都能收到。

2. 多个发送对一个接收

配置多对一,只需要改变数据通道和地址的配置即可。 硬件最多支持 6 个数据通道,通道 0~通道 5,数据通道 0 的地址可以与其他 5 个完全不一样,数据通道 1~5 的 地址有要求,高 4 位必须保持一致,第 5 位可以变化。

8.6 增强模式下的接收端一对多通信

XL2400P 芯片作为发射端,对于一对多通信,可以采用不同的地址不多个接收端进行通信。 XL2400P 芯片作为接收端,可以接收 6 路不同地址、相同频率的发送端数据。每个数据通道拥有自己的地址

使能哪些数据通道是通过寄存器 EN_RXADDR 来设置的。每个数据通道的地址是通过寄存器RX_ADDR_PX 来配置的。通常情况下丌允许丌同的数据通道设置完全相同的地址。如下表给了一例多接收通道地址配置的示例。

发送端地址示例:

发送端1(使用数据通道0)地址

unsigned char RF Test Adrress[5]={0x22,0x33,0x44,0x55,0x66};//RF地址

发送端 2 (使用数据通道 1) 地址

unsigned char RF Test Adrress[5]={0x11,0x11,0x11,0x11,0x11};//RF地址

发送端3(使用数据通道2)地址

unsigned char RF_Test_Adrress[5]={0x12,0x11,0x11,0x11,0x11};//RF地址

2和3的地址高4位须保持一致。

接收端地址示例:

unsigned char RF_Test_Adrress0[5]={0x22,0x33,0x44,0x55,0x66};//RF数据通道0地址 unsigned char RF_Test_Adrress1[5]={0x11,0x11,0x11,0x11,0x11};//RF数据通道1地址 unsigned char RF Test Adrress2 5[4]={0x12,0x13,0x14,0x15};//RF数据通道2-5地址

```
//设置地址:
void RF_Set_Address0(unsigned char *AddrBuff)

{
    Write_RF_Buff(W_REGISTER+TX_ADDR, AddrBuff , 5);
    Write_RF_Buff(W_REGISTER+RX_ADDR_PO, AddrBuff , 5);
}

//设置地址:
void RF_Set_Address1(unsigned char *AddrBuff)

{
    Write_RF_Buff(W_REGISTER+TX_ADDR, AddrBuff , 5);
    Write_RF_Buff(W_REGISTER+RX_ADDR_P1, AddrBuff , 5);
}

//设置地址:
void RF_Set_Address2_5(unsigned char *AddrBuff)

{
    Write_RF_Buff(W_REGISTER+RX_ADDR_P2TOP5, AddrBuff , 4);
}
```

设置地址 0 是写入 0A 寄存器,设置地址 1 是写入 0B 寄存器,设置地址 2-5 是写 0C 寄存器。

		1			
OA	RX_ADDR_P0	39:0	0xE7 E7E7 E7E7	R/W	RX 地址数据管道 0。最大 5 个字节。首先写入 LSB 字节。 SETUP_AW设置的使用的字节数。
OB	RX_ADDR_P1	39:0	0xC2 C2C2 C2C2	R/W	RX 地址数据管道 1。最大 6 个字节。首先写入 LSB 字节。 SETUP_AW设置的使用的字节数。
	RX_ADDR_P2TOP5				仅设置 LSB, MSB 字节使用 RX_ADDR_P1[39: 8]
	RX_ADDR_P5	31:24	0xc6	R/W	RX地址数据管道5
OC	RX_ADDR_P4	23:16	0xc5	R/W	RX地址数据管道4
	RX_ADDR_P3	15:8	0xc4	R/W	RX地址数据管道3
	RX_ADDR_P2	7:0	0xc3	R/W	RX地址数据管道2